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1. In the previous two papers [2, III, IV], we have studied
the Hilbert transform from a point of view of the interpolation of
operation and its applications. In [2, III] we have given a negative
example as to the existence of this transformation, so we introduce
a modified definition for a function of the more extensive class. In
the book of N. I. Achiezer [1, p. 126] we find a modified definition,
but this definition does not seem to be appropriate for the case p>2,
because in the class L? (p>2) the Fourier transform does not neces-
sarily exist. Here we introduce a new definition —a generalized
Hilbert transform of order 7:
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where r is any positive real number.

In particular f,(x) means the ordinary one. Let f (x) belong to
L? (p=1) and r=n (n=1,2,---). Then we have
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The present paper consists of two parts. In the first part we
shall treat the integrability of (1.1) after [2, III]. In the second part
we shall prove the reciprocal formula, and this plays an essential role
in the study of the analytic function in a half-plane, as before [2, IV].

Chapter 1. Integrability of the generalized Hilbert transform

2. Let f(x) be a real or complex valued measurable function
over (—oo, ), In order to make some variety we introduce the
measure function as before
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By L% (p=1) we will denote the class of functions such that
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Then if we put



