No. 2] 77

16. L'Intégration des Fonctions à Valeurs Vectorielles d'après la Méthode des Espaces Rangés

Par Hatsuo OKANO

Université d'Osaka

(Comm. by K. Kunugi, M.J.A., Feb. 12, 1959)

En utilisant la théorie des espaces rangés, Prof. K. Kunugi a introduit une nouvelle définition de l'intégrale (qu'on appelle l'intégrale $(E.\ R.)$) des fonctions à valeurs réelles. Dans la présente Note nous considérons les fonctions à valeurs vectorielles et l'intégrales $(E.\ R.)$ de telles fonctions.

1. Espaces vectoriels rangés. Etant donné un espace R où la topologie est donnée par un système de voisinages satisfaisant à l'axiomes (A), (B) de F. Hausdorff, on dit qu'il est un espace rangé o s'il existe une famille des voisinages \mathfrak{B}_n $(n=0,1,2,\cdots)$ qui satisfait à la condition: (a) Pour tout voisinage v(p) du point p et pour tout entier positif n, il existe un entier m, $m \ge n$, tel qu'il existe un voisinage u(p) appartenant à la famille \mathfrak{B}_m et qui est contenu dans v(p). Un voisinage d'un

On dit qu'un espace rangé R est un espace vectoriel rangé réel s'il satisfait à deux conditions suivantes:

(1) R est un espace vectoriel sur le corps des nombres réels.

point p sera dit de rang n, s'il appartient à la famille \mathfrak{V}_n .

(2) R est un groupe rangé 'comme un groupe additif: tout voisinage v(p) du point p de rang n est exprimable de la manière:

$$v(p) = V + p_{\bullet}^{5}$$

où V est un voisinage du point 0 de rang n.

Étant donné un espace vectoriel rangé réel, pour une suite monotone décroissante de voisinages

$$V_0 + p_0 \supseteq V_1 + p_1 \supseteq \cdots \supseteq V_n + p_n \supseteq \cdots$$

on dit qu'elle est fondamentale si elle satisfait à deux conditions suivantes:

(1)
$$V_n \in \mathfrak{V}_{r_n}$$
, $\gamma_0 < \gamma_1 < \cdots < \gamma_n < \cdots$; (2) $p_{2n} = p_{2n+1}$.

¹⁾ K. Kunugi: Application de la méthode des espaces rangés à la théorie de l'intégration. I, Proc. Japan Acad., **32**, 215-220 (1956); H. Okano: (*ER*)-integral of Radon-Stieltjes type, ibid., **34**, 580-584 (1958).

²⁾ F. Hausdorff: Grundzüge der Mengenlehre, Leipzig, 213 (1914).

³⁾ Pour la terminologie concernant à l'espace rangé, cf. K. Kunugi: Sur les espaces complets et régulièrement complets. I, II, Proc. Japan Acad., **30**, 553-556, 912-916 (1954); H. Okano: Some operations on the ranked spaces, ibid., **33**, 172-176 (1957). Dans la présente Note nous ne considérons que le cas où $\omega_k = \omega_0$.

⁴⁾ Voir H. Okano: Loc. cit. dans 3).

⁵⁾ V+p désigne l'ensemble de tous les points q=r+p tels que $r \in V$.