26. On Semi-continuity of Functionals. II

By Shōzō Koshi

Mathematical Institute, Hokkaidō University (Comm. by K. KUNUGI, M.J.A., March 12, 1959)

1. Introduction. In earlier paper [2], we have proved Theorem 1 [2] which is concerned with the semi-continuity of additive functionals on semi-ordered linear spaces. By the same notion, we shall obtain some results concerning additive functionals on Boolean algebras.¹⁾ Let B be a σ -complete²⁾ Boolean algebra. A positive functional m on B is called a *finitely additive measure* if the following condition is satisfied.

(1.1) m(x+y) = m(x) + m(y)

for
$$x, y \in B$$
 with $x \frown y = 0$.

Furthermore if the functional m satisfies the following condition (1.2), m is called a *totally additive measure*.

(1.2) For a system of mutually orthogonal elements x_i $(i=1, 2, \cdots)$ we have

$$m(\bigcup_{i=1}^{\infty} x_i) = \sum_{i=1}^{\infty} m(x_i)$$

(1.2) implies (1.1), but the converse does not follow. However, sometimes a finitely additive measure is totally additive on some ideal³⁾ of B.

If B is a Boolean algebra, then we can consider the representation space. (This space consists of all dual maximal ideals \mathfrak{p} of B.) We denote this space by \mathfrak{E} . \mathfrak{E} constitutes a compact Hausdorff space with open basis: $U_x = \{\mathfrak{p} : \mathfrak{p} \ni x\}, x \in B$.

If B is σ -complete, then the closure of a σ -open set (countable union of closed sets) of \mathfrak{S} is open in \mathfrak{S} . An ideal I of B is said to be *dense* in B if for any $x(\pm 0) \in B$ there exists an element $y \in I$ with $0 \pm y \leq x$.

We shall consider the following property of σ -complete Boolean algebra.

(A) Let A_n $(n=1, 2, \dots) \subset \mathfrak{S}$ be σ -open and dense. Then we can find an open dense set $U \subset \mathfrak{S}$ with $U \subset \bigcap_{n=1}^{\infty} A_n$.

We have also the following property equivalent to (A).

(A') Let B_n $(n=1, 2, \dots) \subset \mathfrak{G}$ be δ -closed⁴⁾ and no-where dense

1) For the definition of Boolean algebra, see [1, Chapter 10].

2) B is σ -complete if for x_i $(i=1, 2, \cdots)$, there exists $x = \bigcup_{i=1}^{m} x_i$.

- 3) $M \subset B$ is an ideal (in Birkhoff's terminology [1]) if $a \in M$, $b \leq a$ implies $b \in M$.
- 4) Complement of σ -open set.