22. An Abstract Analyticity in Time for Solutions of a Diffusion Equation

By Kôsaku Yosida

Department of Mathematics, University of Tokyo (Comm. by Z. SUETUNA, M.J.A., March 12, 1959)

1. Introduction and the result. Consider an equation of evolution

(1.1)
$$\frac{\partial u}{\partial t} = Au, \quad t > 0,$$

where the differential operator

(1.2)
$$A = a^{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + b^i(x) \frac{\partial}{\partial x_i} + c(x)$$

is elliptic in a connected domain G of an *m*-dimensional euclidean space E^m . Under certain conditions upon the coefficients a, b and c of A, we can specify a linear subspace D of $L_2(G)$ with the following three properties.

(i) The functions $\in D$ are C^{∞} in G, and D is $L_2(G)$ -dense in $L_2(G)$ such that $Af \in L_2(G)$ for $f \in D$.

(ii) If we consider A as an operator on $D \subseteq L_2(G)$ into $L_2(G)$, then A admits, in $L_2(G)$, the smallest closed extension \hat{A} .

(iii) \widehat{A} is the infinitesimal generator of a semi-group T_t of normal type in $L_2(G)$ such that, for any $f \in L_2(G)$, $u(t, x) = (T_t f)(x)$ is a solution of (1.1) with the initial condition

(1.1)'
$$L_2(G) - \lim_{t \to 0} u(t, x) = f(x)$$

satisfying the "forward and backward unique continuation property": (1.3) If, for a fixed $t_0 > 0$, $u(t_0, x) \equiv 0$ on an open set $G_0 \subseteq G$, then u(t, x) = 0 for every t > 0 and every $x \in G_0$.

The proof of (1.3) is based upon the fact that $T_t f$ is an $L_2(G)$ valued abstract analytic function of t in a certain sector of the complex plane which contains the positive t-axis in its interior and with t=0 as its vertex. Such abstract analyticity in time is implied by the estimate (2.11) below of the resolvent of $\hat{A}^{(1)}$

Our result (1.3) gives a partial answer to a conjecture proposed by S. Ito and H. Yamabe [2]. Actually, our solution $u(t, x) = (T_i f)(x)$ enjoys the "unique continuation property":

(1.3)' If, for a fixed $t_0 > 0$, $u(t_0, x) \equiv 0$ on an open set $G_0 \subseteq G$, then u(t, x) = 0 for every t > 0 and every $x \in G$.

¹⁾ This estimate was given in the author's lecture at Yale University in the fall of 1958.