No. 5]

47. On the Spectral-resolutions of Quasi-compact Elements in a B*-algebra

By Yoshimichi MIBU

(Comm. by K. KUNUGI, M.J.A., May 7, 1959)

Let \mathfrak{B} be a complex Banach algebra with unit element e. We shall consider the inverse of $\lambda e - a$ as a function of λ for a fixed $a \in \mathfrak{B}$. According as $\lambda e - a$ is regular or singular in \mathfrak{B} , we say that λ belongs to the resolvent set $\rho(a)$ or the spectrum $\sigma(a)$ of a. And a non-void set σ is called a spectral set of a if σ is a subset of $\sigma(a)$ and σ is both open and closed in $\sigma(a)$. For λ in $\rho(a)$ the inverse of $\lambda e - a$ exists; it is denoted by $R(\lambda; a)$ and is called the resolvent of a. It is well known that the resolvent set $\rho(a)$ of a is open and in each of its components $R(\lambda; a)$ is a regular function of λ . The following theorem is proved in [1, pp. 105-107 (Theorems 5.11.1 and 5.11.2)].

Theorem A. Let $\sigma(a) = \bigcup_{i=1}^{n} \sigma_i$ where each σ_i is a spectral set of a and $\sigma_i \cap \sigma_j = 0$ when $i \neq j$. Let us suppose that closed Jordan curves Γ_i , $i=1, 2, \cdots, n$, satisfy the following conditions:

- (i) For each $i(1 \le i \le n)$ σ_i is contained in the open domain \mathfrak{D}_i which is bounded by Γ_i .
 - (ii) $\mathfrak{D}_{i} \subset \mathfrak{D}_{j} = 0$ when $i \neq j$.
- (iii) Each Γ_i has the positive orientation, that is, the domain \mathfrak{D}_i lies to the left of Γ_i .

If we define

$$(1)$$
 $J_i = rac{1}{2\pi i} \int\limits_{\Gamma_i} R(\zeta;a) \, d\zeta \quad ext{and} \quad a_i = J_i a, \; i = 1, 2, \cdots, n,$

then

(2)
$$\sum_{i=1}^{n} J_{i} = e$$
, $J_{i}^{2} = J_{i}$, $J_{i}J_{j} = \theta$, $i \neq j$, $J_{i} \neq \theta$, e , $\sum_{i=1}^{n} a_{i} = a$.

Furthermore, the spectrum $\sigma(a_i)$ of a_i is σ_i in addition to $\lambda=0$, that is, $\sigma(a_i)=\sigma_i \subset \{0\}$. In particular, if σ_i is a single point λ_i , then an element $J_i(a-\lambda_i e)$ is quasi-nilpotent (or nilpotent).

First, under the assumption that $\mathfrak B$ is a commutative B^* -algebra (see Definition 1 below), we shall extend the above theorem to a case in which the spectrum $\sigma(a)$ of a consists of infinitely many components. Next, by using this extension, we shall offer a new proof for the spectral resolution theorem of compact normal operators in Hilbert spaces.

Definition 1. A Banach algebra \mathfrak{B} in which every element a has an adjoint a^* with $(\alpha a + \beta b)^* = \overline{\alpha} a^* + \overline{\beta} b^*$, $(ab)^* = b^* a^*$, $a^{**} = a$, and