46. Some Remarks on Inner Product in Product Space of Unitary Spaces

By Chen-Jung Hsu*)
Tohoku University, and National Taiwan University, Formosa
(Comm. by K. Kunugi, m.J.A., May 7, 1959)

1. Let V be a unitary space over reals or complex numbers, and (x, y) be the inner product defined in it. It is known that inner product can be defined in the tensor product $V^{r}=V \otimes \cdots \otimes V$ (r factors in number) which satisfies: [2,3]**)

$$
\left(x_{1} \otimes x_{2} \otimes \cdots \otimes x_{r}, y_{1} \otimes y_{2} \otimes \cdots \otimes y_{r}\right)=\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \cdots\left(x_{r}, y_{r}\right)
$$

This function, when restricted to the subspace of alternate elements $\mathcal{A}\left(V^{r}\right)$ and the subspace of symmetric elements $\mathcal{S}\left(V^{r}\right)$ of V^{r}, gives rise respectively to inner product of the space of exterior r vectors $\Lambda^{r}(V)$ and $P^{r}(V)$ (to be defined below), since these spaces are respectively isomorphic to $\mathcal{A}\left(V^{r}\right)$ and $\mathcal{S}\left(V^{r}\right)$.

If u is the conjugate isomorphism between V and its dual (conjugate) space V^{*}, then

$$
\langle x, u(y)\rangle=(x, y) \quad \text { for all } x \in V,
$$

where $\left\langle x, y^{*}\right\rangle$ is the pairing of V and V^{*} to scalars.
Denote by $u^{r}: V^{r} \rightarrow V_{r}=V^{*} \otimes \cdots \otimes V^{*}$ (r factors in number) the r-th tensor power of u, then u^{r} is an isomorphism between V^{r} and V_{r} and

$$
u^{r}\left(x_{1} \otimes \cdots \otimes x_{r}\right)=u\left(x_{1}\right) \otimes \cdots \otimes u\left(x_{r}\right) .
$$

Moreover, if $\Lambda^{r} u: \Lambda^{r}(V) \rightarrow \Lambda^{r}\left(V^{*}\right)$ is the r-th exterior power of u, then $\Lambda^{r} u$ is an isomorphism between $\Lambda^{r}(V)$ and $\Lambda^{r}\left(V^{*}\right)$ and

$$
\left(\Lambda^{r} u\right)\left(x_{1} \wedge \cdots \wedge x_{r}\right)=u\left(x_{1}\right) \wedge \cdots \wedge u\left(x_{r}\right) .
$$

As it is known that $\left(V^{r}\right)^{*} \approx V_{r}$ and $\left(\Lambda^{r}(V)\right)^{*} \approx \Lambda^{r}\left(V^{*}\right)$, we can identify the isomorphic spaces.

Now, we propose to show:
Theorem 1. u^{r} is the conjugate isomorphism between V^{r} and $V_{r}=\left(V^{r}\right)^{*}$, and $\Lambda^{r} u$ is the conjugate isomorphism between $\Lambda^{r}(V)$ and $\Lambda^{r}\left(V^{*}\right)=\left(\Lambda^{r}(V)\right)^{*}$.

Proof. For any $x_{1} \otimes \cdots \otimes x_{r}$ and $y_{1} \otimes \cdots \otimes y_{r}$ in V^{r}, we have

$$
\begin{aligned}
& \left\langle x_{1} \otimes \cdots \otimes x_{r} \quad u^{r}\left(y_{1} \otimes \cdots \otimes y_{r}\right)\right\rangle \\
= & \left\langle x_{1} \otimes \cdots \otimes x_{r} \quad u\left(y_{1}\right) \otimes \cdots \otimes u\left(y_{r}\right)\right\rangle \\
= & \left\langle x_{1} u\left(y_{1}\right)\right\rangle \cdots\left\langle x_{r} \quad u\left(y_{r}\right)\right\rangle
\end{aligned}
$$

[^0]
[^0]: *) I wish to express my cordial thanks to Prof. S. Sasaki for his kind guidance and encouragement.
 **) In the sequel we follow the notation of S. S. Chern [2]. The number in bracket denotes the references at the end of this paper.

