46. Some Remarks on Inner Product in Product Space of Unitary Spaces

By Chen-Jung HSU*)

Tohoku University, and National Taiwan University, Formosa (Comm. by K. KUNUGI, M.J.A., May 7, 1959)

1. Let V be a unitary space over reals or complex numbers, and (x, y) be the inner product defined in it. It is known that inner product can be defined in the tensor product $V^r = V \otimes \cdots \otimes V$ (r factors in number) which satisfies: $[2, 3]^{**}$

 $(x_1 \otimes x_2 \otimes \cdots \otimes x_r, y_1 \otimes y_2 \otimes \cdots \otimes y_r) = (x_1, y_1)(x_2, y_2) \cdots (x_r, y_r).$

This function, when restricted to the subspace of alternate elements $\mathcal{A}(V^r)$ and the subspace of symmetric elements $\mathcal{S}(V^r)$ of V^r , gives rise respectively to inner product of the space of exterior rvectors $\Lambda^r(V)$ and $P^r(V)$ (to be defined below), since these spaces are respectively isomorphic to $\mathcal{A}(V^r)$ and $\mathcal{S}(V^r)$.

If u is the conjugate isomorphism between V and its dual (conjugate) space V^* , then

$$\langle x, u(y) \rangle = (x, y)$$
 for all $x \in V$,

where $\langle x, y^* \rangle$ is the pairing of V and V* to scalars.

Denote by $u^r: V^r \to V_r = V^* \otimes \cdots \otimes V^*$ (r factors in number) the r-th tensor power of u, then u^r is an isomorphism between V^r and V_r and

$$u^r(x_1 \otimes \cdots \otimes x_r) = u(x_1) \otimes \cdots \otimes u(x_r).$$

Moreover, if $\Lambda^r u : \Lambda^r(V) \to \Lambda^r(V^*)$ is the *r*-th exterior power of *u*, then $\Lambda^r u$ is an isomorphism between $\Lambda^r(V)$ and $\Lambda^r(V^*)$ and

 $(\Lambda^r u)(x_1 \wedge \cdots \wedge x_r) = u(x_1) \wedge \cdots \wedge u(x_r).$

As it is known that $(V^r)^* \approx V_r$ and $(\Lambda^r(V))^* \approx \Lambda^r(V^*)$, we can identify the isomorphic spaces.

Now, we propose to show:

Theorem 1. u^r is the conjugate isomorphism between V^r and $V_r = (V^r)^*$, and $\Lambda^r u$ is the conjugate isomorphism between $\Lambda^r(V)$ and $\Lambda^r(V^*) = (\Lambda^r(V))^*$.

Proof. For any
$$x_1 \otimes \cdots \otimes x_r$$
 and $y_1 \otimes \cdots \otimes y_r$ in V^r , we have
 $\langle x_1 \otimes \cdots \otimes x_r \quad u^r(y_1 \otimes \cdots \otimes y_r) \rangle$
 $= \langle x_1 \otimes \cdots \otimes x_r \quad u(y_1) \otimes \cdots \otimes u(y_r) \rangle$
 $= \langle x_1 \quad u(y_1) \rangle \cdots \langle x_r \quad u(y_r) \rangle$

^{*)} I wish to express my cordial thanks to Prof. S. Sasaki for his kind guidance and encouragement.

^{**)} In the sequel we follow the notation of S. S. Chern [2]. The number in bracket denotes the references at the end of this paper.