44. Notes on Uniform Convergence of Trigonometrical Series. I

By Kenji Yano
Mathematical Department, Nara Women's University, Nara (Comm. by Z. Suetuna, m.J.A., May 7, 1959)

1. In the preceding paper [1] we have studied the uniform convergence of the series

$$
\sum_{n=1}^{\infty} \frac{s_{n}}{n} \sin n t
$$

concerning the Riemann summability $\left(R_{1}\right)$. In this paper we shall treat the cosine-analogue.

Let $\left\{s_{n} ; n=1,2, \cdots\right\}$ be a sequence with real terms, and let

$$
s_{n}^{r}=\sum_{\nu=0}^{n} A_{n-\nu}^{r-1} s_{\nu} \quad(-\infty<\gamma<\infty)
$$

where $s_{0}=0$ and $A_{n}^{r}=\binom{\gamma+n}{n}$. The theorem to be proved is as follows:
Theorem 1. Suppose that $0<r, 0<s<1$ (or $s=1,2, \cdots$), and $0<\alpha \leqq 1$, and that

$$
\begin{gather*}
\sum_{\nu=1}^{n}\left|s_{\nu}^{r}\right|=o\left(n^{1+r \alpha}\right), \tag{1.1}\\
\sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{-s}\right|-s_{\nu}^{-s}\right)=O\left(n^{1-s \alpha}\right), \tag{1.2}
\end{gather*}
$$

as $n \rightarrow \infty$. Then, (I) when $0<\alpha<1$ the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{s_{n}}{n} \cos n t \tag{1.3}
\end{equation*}
$$

converges uniformly (on the real axis), and (II) when $\alpha=1$ the series (1.3) converges uniformly if and only if $\sum n^{-1} s_{n}$ converges.

Corollary 1. If

$$
\sum_{\nu=n}^{2 n}\left(\left|s_{\nu}^{-1}\right|-s_{\nu}^{-1}\right)=O(1) \quad(n \rightarrow \infty)
$$

where $s_{n}^{-1}=s_{n}-s_{n-1}$, and if the series in

$$
\begin{equation*}
g(t)=\sum_{n=1}^{\infty} s_{n} \sin n t \tag{1.4}
\end{equation*}
$$

converges boundedly in the interval (δ, π) for any $\delta>0$, then a necessary and sufficient condition for the convergence of the Caucy integral

$$
\begin{equation*}
\int_{\rightarrow 0}^{\pi} g(t) d t \tag{1.5}
\end{equation*}
$$

is the convergence of the series $\sum n^{-1} s_{n}$.
This is a theorem of Izumi [2,3].
This corollary follows from Theorem 1 with $r=s=\alpha=1$, since the convergence of the series in (1.4) implies $s_{n}=o(1)$, cf. Zygmund [4,

