44. Notes on Uniform Convergence of Trigonometrical Series. I

By Kenji YANO

Mathematical Department, Nara Women's University, Nara (Comm. by Z. SUETUNA, M.J.A., May 7, 1959)

1. In the preceding paper [1] we have studied the uniform convergence of the series

$$\sum_{n=1}^{\infty} \frac{s_n}{n} \sin nt$$

concerning the Riemann summability (R_1) . In this paper we shall treat the cosine-analogue.

Let $\{s_n; n=1, 2, \dots\}$ be a sequence with real terms, and let

$$s_n^{\gamma} = \sum_{\nu=0}^n A_{n-\nu}^{\gamma-1} s_{\nu} \qquad (-\infty < \gamma < \infty),$$

where $s_0=0$ and $A_n^r = \binom{\gamma+n}{n}$. The theorem to be proved is as follows:

THEOREM 1. Suppose that 0 < r, 0 < s < 1 (or $s=1, 2, \cdots$), and $0 < \alpha \leq 1$, and that

(1.1)
$$\sum_{\nu=1}^{n} |s_{\nu}^{r}| = o(n^{1+r\alpha}),$$

(1.2)
$$\sum_{\nu=n}^{2n} (|s_{\nu}^{-s}| - s_{\nu}^{-s}) = O(n^{1-s\alpha}),$$

as $n \rightarrow \infty$. Then, (I) when $0 < \alpha < 1$ the series

(1.3)
$$\sum_{n=1}^{\infty} \frac{s_n}{n} \cos nt$$

converges uniformly (on the real axis), and (II) when $\alpha = 1$ the series (1.3) converges uniformly if and only if $\sum n^{-1}s_n$ converges.

COROLLARY 1. If

$$\sum_{\nu=n}^{2m} (|s_{\nu}^{-1}| - s_{\nu}^{-1}) = O(1) \qquad (n \to \infty),$$

where $s_n^{-1} = s_n - s_{n-1}$, and if the series in

(1.4)
$$g(t) = \sum_{n=1}^{\infty} s_n \sin nt$$

converges boundedly in the interval (δ, π) for any $\delta > 0$, then a necessary and sufficient condition for the convergence of the Caucy integral

(1.5)
$$\int_{\to 0}^{\pi} g(t) dt$$

is the convergence of the series $\sum n^{-1}s_n$.

This is a theorem of Izumi [2, 3].

This corollary follows from Theorem 1 with $r=s=\alpha=1$, since the convergence of the series in (1.4) implies $s_n=o(1)$, cf. Zygmund [4,