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57. Notes on Uniform Convergence of Trigonometrical
Series. II

By Kenji YANO
Department of Mathematics, Nara Women’s University, Nara
(Comm. by Z. SUETUNA, M.J.A., June 12, 1959)

1. We consider a series with real terms

”21 a, (a,=0),

and write
1.1) Si=SVAL_, a,=3) A7} s,

(— o0 << 00),
(1.2) t;.=§3"0 A,’.:l(ua.,)=””o Al-lt,

where s,=sb, t,=t), and A,’.z(rj;n). Then, in particular sj=0, i =0,
and for n=1,2,-.-,

Sl =0y 8 = — Oy = — Al

th=mna,, t;‘=nra,—n—1a,_,.

The object of this paper is to prove some theorems (Theorems
3-5) which will unify the results of Szész [1], Hirokawa [5] and
others. This note is a continuation of Yano [6, 7].

THEOREM 1. Let 0<r, 0<s<1 (or s=1,2,:--:) and 0<a=<1. If

(1) St =o(mi*™),
(L4) S|t =0(n )

as n—>oo, then the series >)a, sin nt converges uniformly (on the real
axis).

THEOREM 2. Under the same assumption as in Theorem 1, the
series >) a, cos nt converges uniformly when 0<a<1, and in the case
a=1 this series converges uniformly if and only if 3] a, converges.

These theorems are an alternative form of Theorem 1 in the
papers [6] and [7] respectively.

2. THEOREM 3. Let 0<s=1, and ¢ be an arbitrary real constant.

If

(A.2) (1—z) i 1, %" > 0 (x—>1—0),
(21) S (nl—1)=00m"") (n—>c0),
where

(2.2) Ta=1+qn )t =33 (n=1,2,---),



