57. Notes on Uniform Convergence of Trigonometrical Series. II

By Kenji Yano
Department of Mathematics, Nara Women's University, Nara
(Comm. by Z. SuEtuna, m.J.A., June 12, 1959)

1. We consider a series with real terms

$$
\sum_{n=1}^{\infty} a_{n} \quad\left(a_{0}=0\right)
$$

and write

$$
\begin{align*}
& s_{n}^{r}=\sum_{\nu=0}^{n} A_{n-\nu}^{r-} a_{\nu}=\sum_{\nu=0}^{n} A_{n-\nu}^{r-1} s_{\nu} \tag{1.1}\\
& t_{n}^{r}=\sum_{\nu=0}^{n} A_{n-\nu}^{r-1}\left(\nu a_{\nu}\right)=\sum_{\nu=0}^{n} A_{n-\nu}^{r-1} t_{\nu}
\end{align*}
$$

where $s_{n}=s_{n}^{0}, t_{n}=t_{n}^{0}$, and $A_{n}^{r}=\binom{\gamma+n}{n}$. Then, in particular $s_{0}^{r}=0, t_{0}^{r}=0$, and for $n=1,2, \cdots$,

$$
\begin{array}{ll}
s_{n}^{-1}=a_{n}, & s_{n}^{-2}=a_{n}-a_{n-1}=-\Delta a_{n-1}, \\
t_{n}^{0}=n a_{n}, & t_{n}^{-1}=n a_{n}-(n-1) a_{n-1} .
\end{array}
$$

The object of this paper is to prove some theorems (Theorems $3-5$) which will unify the results of Szász [1], Hirokawa [5] and others. This note is a continuation of Yano [6, 7].

Theorem 1. Let $0<r, 0<s<1$ (or $s=1,2, \cdots$) and $0<\alpha \leqq 1$. If

$$
\begin{gather*}
\sum_{\nu=1}^{n}\left|t_{\nu}^{r}\right|=o\left(n^{1+r \alpha}\right), \tag{1.3}\\
\sum_{\nu=n}^{2 n}\left(\left|t_{\nu}^{-s}\right|-t_{\nu}^{-s}\right)=O\left(n^{1-s \alpha}\right), \tag{1.4}
\end{gather*}
$$

as $n \rightarrow \infty$, then the series $\sum a_{n} \sin n t$ converges uniformly (on the real axis).

Theorem 2. Under the same assumption as in Theorem 1, the series $\sum a_{n} \cos n t$ converges uniformly when $0<\alpha<1$, and in the case $\alpha=1$ this series converges uniformly if and only if $\sum a_{n}$ converges.

These theorems are an alternative form of Theorem 1 in the papers [6] and [7] respectively.
2. THEOREM 3. Let $0<s \leqq 1$, and q be an arbitrary real constant. If

$$
\begin{array}{lr}
(1-x) \sum_{n=1}^{\infty} n a_{n} x^{n} \rightarrow 0 & (x \rightarrow 1-0), \\
\sum_{\nu=n}^{2 n}\left(\left|\gamma_{\nu}\right|-\gamma_{\nu}\right)=O\left(n^{1-s}\right) & (n \rightarrow \infty), \tag{2.1}
\end{array}
$$

where

$$
\begin{equation*}
\gamma_{n}=\left(1+q n^{-1}\right) t_{n}^{1-s}-t_{n+1}^{1-s} \quad(n=1,2, \cdots), \tag{2.2}
\end{equation*}
$$

