81. On the Singularity of a Positive Linear Functional on Operator Algebra

By Masamichi TAKESAKI

Department of Mathematics, Tokyo Institute of Technology (Comm. by K. KUNUGI, M.J.A., July 13, 1959)

In the previous paper [3], we have introduced the notion of a singular linear functional on W^* -algebra **M** as follows: a positive linear functional φ on **M** is called singular if there exists no non-zero σ -weakly continuous positive linear functional ψ such as $\psi \leq \varphi$. \mathbf{This} notion is corresponding to the one of *purely finite additive measure* in the abelian case of Yosida-Hewitt [5]. And we have proved the decomposition theorem of positive linear functional on M, whose another proof was given by Nakamura in [2], as follows: Any positive linear functional φ on **M** is uniquely decomposed into the sum of σ -weakly continuous positive linear functional φ_1 and singular one φ_2 . And if φ is singular, then φ is so on p**M**p for every non-zero projection p of M. Moreover, suppose M_* is the space of all σ -weakly continuous linear functionals on M and M_{*}^{\perp} the space of all linear combinations of singular positive linear functionals, we have proved the following decomposition of the conjugate space M^* of $M: M^* = M_* \bigoplus_{l^1} M_*^{\perp}$ where \bigoplus_{l^1} means the l¹-direct sum of its summands. This decomposition of the conjugate space implies that of a uniformly continuous mapping which proved by Tomiyama [4] as follows: Let π be a uniformly continuous linear mapping from M into another W*-algebra N, then there exist unique two linear mappings π_1 and π_2 of **M** into **N** such that $\pi = \pi_1 + \pi_2$, π_1 is σ -weakly continuous and ${}^t\pi_2(N_*) \subset M_*^{\perp}$ where ${}^t\pi_2$ means the transpose of π_2 . And according to π being a homomorphism, positive or *-preserving, π_1 and π_2 are homomorphisms, positive or *-preserving respectively. Hence a linear functional φ on M and a linear mapping π from **M** into another W*-algebra **N** are called singular if $\varphi \in M_*^{\perp}$ and ${}^t\pi(N_*) \subset M_*^{\perp}$, respectively.

This note is devoted to give a characterization of the singularity of a positive linear functional on M and a short alternative proof of Theorem 6 in [3].

Theorem 1. Let \mathbf{M} be a W^* -algebra and φ a positive linear functional on \mathbf{M} . Then a necessary and sufficient condition that φ is singular is that for any non-zero projection e, there exists a non-zero projection $f \leq e$ such as $\langle f, \varphi \rangle = 0$.

Proof. Suppose φ is not singular, the σ -weakly continuous part φ_1 of φ is not zero by Theorem 3 in [3]. Let e be the carrier pro-