71. Remarks on My Previous Paper on Congruence Zeta-Functions

By Makoto Ishida
Mathematical Institute, University of Tokyo
(Comm. by Z. Suetuna, m.J.A., July 13, 1959)

1. First I want to give a correction of Lemma 2 in my previous paper [1].

Lemma. Let H be a finite group of order h and χ be an irreducible charucter of H. Then we have

$$
\sum_{\tau \in H}\left\{\chi(\tau)^{2}-\chi\left(\tau^{2}\right)\right\}=0 \text { or } 2 h .
$$

Moreover the second case occurs only if χ is real and the degree of χ is even.

Proof. Let $F: \tau \rightarrow F(\tau)=\left(a_{i j}(\tau)\right)$ be an irreducible representation of H with the character χ. Then $F^{*}: \tau \rightarrow F^{*}(\tau)=\left(a_{i j}^{*}(\tau)\right)={ }^{t} F\left(\tau^{-1}\right)=\left(a_{j i}\left(\tau^{-1}\right)\right)$ is also an irreducible representation of H with the character $\bar{\chi}$. If F and F^{*} are not equivalent (i.e. χ is not real), the proof is the same as in [1]. Hence we may restrict ourselves to the case where F and F^{*} are equivalent; then we have $\sum_{\tau \in H} \chi(\tau)^{2}=h$. Let U be a non-singular matrix such that ${ }^{t} F\left(\tau^{-1}\right)=F^{*}(\tau)=U^{-1} F(\tau) U$ for all τ in H. Then we have $F(\tau)={ }^{t} U^{t} F\left(\tau^{-1}\right)^{t} U^{-1}={ }^{t} U U^{-1} F(\tau)\left(^{t} U U^{-1}\right)^{-1}$ for all τ in H and so, by a lemma of Schur, ${ }^{t} U U^{-1}=\rho E$, where E denotes the unit matrix. Considering the determinants of the both sides, we have $\rho^{f}=1$, where f is the degree of F. On the other hand, by ${ }^{t} U=\rho U$, we have $U=\rho^{2} U$ and so $\rho^{2}=1$. Hence we have $\rho= \pm 1$ and, especially, $\rho=1$ if f is odd. Let $U=\left(u_{i j}\right)$ and $V=U^{-1}=\left(v_{i j}\right)$. Then, as in [1], we have, by another lemma of Schur, $\sum_{\tau \in H} \chi\left(\tau^{2}\right)=\sum_{i, j, \varepsilon} a_{i j}(\tau) a_{i j}^{*}\left(\tau^{-1}\right)=\sum_{i, j, \tau} a_{i j}(\tau) \sum_{\mu, \nu} v_{i \mu} a_{\mu \nu}\left(\tau^{-1}\right)$ $u_{\nu j}=\sum_{i, j} \sum_{\mu, \nu} v_{i \mu} u_{\nu j} \sum_{\tau \tau} a_{i j}(\tau) a_{\mu \nu}\left(\tau^{-1}\right)=h / f \cdot \sum_{i, j} v_{i j} u_{i j}=h / f \cdot \operatorname{tr}\left(U^{-1 t} U\right)=h / f$ $\cdot \operatorname{tr}(\rho E)= \pm h$.
2. Let A / V be a Galois covering of degree n, defined over a finite field k with q elements, where A is an abelian variety and V is a normal, projective variety of dimension r; let G be the Galois group. Let Ξ be the character of the representation $M_{l} \mid G$ (the restriction of the l-adic representation of A to G) of G. Then, by the above lemma, $1 / 2 n \cdot \sum_{o \in G}\left\{\Xi(\sigma)^{2}-\boldsymbol{Z}\left(\sigma^{2}\right)\right\}$ is a non-negative rational integer. By the orthogonality relation of group-characters and the results in [1], we have the following statement, which gives a correction and a supplement to the last part of Theorem 1 in [1].

Theorem. Let the notations be as explained above. Then the zeta-function $Z(u, V)$ of V over k has $1 / 2 n \cdot \sum_{\sigma \in G}\left\{\Xi(\sigma)^{2}-\Xi\left(\sigma^{2}\right)\right\}$ poles on the circle $|u|=q^{-(r-1)}$. Moreover, if there exist actually such poles,

