108. Remarks on Pseudo-resolvents and Infinitesimal Generators of Semi-groups

By Tosio Kato
Department of Physics, University of Tokyo
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1959)

Let X be a Banach space and $E(X)$ the algebra of all bounded linear operators on X to X. As is well known, a linear operator A in X is the infinitesimal generator of a semi-group $\{U(t)\}, 0<t<\infty$, $U(t) \in E(X)$, if i) A is densely defined, ii) the resolvent ($\lambda I-A)^{-1} \in E(X)$ exists for sufficiently large real λ and $\left\|(\lambda I-A)^{-1}\right\|=O\left(\lambda^{-1}\right)$ for $\lambda \rightarrow+\infty$ and iii) certain additional conditions are satisfied according to the types of semi-groups considered. ${ }^{1)}$

The object of the present note is to point out that i) is a consequence of ii), provided that the underlying space X is locally sequentially weakly compact (abbr. l.s.w.c.). In particular this is the case if X is reflexive. ${ }^{2)}$ This will be shown below as a consequence of a general theorem on pseudo-resolvents. ${ }^{3)}$ A pseudo-resolvent $J(\lambda)$ is a function on a subset D of the complex plane to $E(X)$ satisfying the resolvent equation

$$
\begin{equation*}
J(\lambda)-J(\mu)=-(\lambda-\mu) J(\lambda) J(\mu), \quad \lambda, \mu \in D \tag{1}
\end{equation*}
$$

It follows directly from (1) that all $J(\lambda), \lambda \in D$, have a common null space N and a common range R, which will be called respectively the null space and the range of the pseudo-resolvent under consideration. N is a closed subspace of X, but R need not be closed; we denote by [R] the closure of R. Note that $J(\lambda)$ is a resolvent (of a closed linear operator A) if and only if $N=\{0\}$; in this case R coincides with the domain of A.

Theorem. Let $J(\lambda), \lambda \in D$, be a pseudo-resolvent with the null space N and the range R. Let there be a sequence $\left\{\lambda_{n}\right\}, n=1,2, \cdots$, such that
(2) $\quad \lambda_{n} \in D,\left|\lambda_{n}\right| \rightarrow+\infty,\left\|\lambda_{n} J\left(\lambda_{n}\right)\right\| \leq M=$ const.

Then we have

$$
\begin{equation*}
N \cap[R]=\{0\} . \tag{3}
\end{equation*}
$$

If, in particular, X is l.s.w.c., then

$$
\begin{equation*}
X=N \oplus[R] \tag{4}
\end{equation*}
$$

1) See E. Hille and R. S. Phillips: Functional analysis and semi-groups, Am. Math. Soc. Colloq. Publ., Vol. 31, Theorems 12.3.1, 12.3.2, 12.4.1 and 12.5.1.
2) When X is a Hilbert space, this fact was noted by C. Foias, Bull. Soc. Math. France, 85, 263 (1957).
3) Hille and Phillips: Footnote 1), pp. 126 and 183.
