104. On Singular Perturbation of Linear Partial Differential Equations with Constant Coefficients. I

By Mitio NAGUMO

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1959)

1. Introduction. Let $(t, x) = (t, x_1, \dots, x_m)$ be m+1 real variables in $t \ge 0$, $x \in E^m$, where E^m denotes the *m*-dimensional Euclidean space. Let L_{ϵ} be an $r \times r$ matrix of differential operators with constant coefficients depending on a parameter ε

$$L_{\varepsilon} = \sum_{j=1}^{t} P_{j} \left(\partial_{x}, \varepsilon \right) \partial_{t}^{j \, \text{\tiny D}}$$

where P_j (ξ , ε) are $r \times r$ matrices of polynomials in $\xi = (\xi_1, \dots, \xi_m)$, whose coefficients depends on $\varepsilon \ge 0$ continuously, and let us consider a system of partial differential equations

(1) $L_{\epsilon}[u] = f(t, x, \varepsilon),$ where $u = (u_{\rho} \ \rho \downarrow 1, \dots, r) \ f = (f_{\rho} \ \rho \downarrow 1, \dots, r).^{2}$ We assume that $P_{\iota}(\xi, \varepsilon) = P_{\iota}(\varepsilon)$ does not contain ξ and (2) det $(P_{\iota}(\varepsilon)) \neq 0$ for $\varepsilon > 0.$

In this note we are concerned with showing the relationship of (1), as $\varepsilon \downarrow 0$, to a particular solution of a related system (for $\varepsilon = 0$) (1°) $L_0[u] = f(t, x, 0)$, especially when L_0 is degenerated, i.e. (2°) $\det (P_1(0)) = 0.^{30}$

Let C_0^{∞} be the set of all on E^m infinite times continuously differentiable complex valued functions with compact carrier. For any $u \in C_0^{\infty}$ we define the norm $||u||_p$ by

$$(3) \qquad || u ||_{p}^{3} = \int_{E^{m}} \sum_{|\nu| \leq p} |\partial_{1}^{\nu_{1}} \cdots \partial_{m}^{\nu_{m}} u(x)|^{2} dx,^{4} (|\nu| = \nu_{1} + \cdots + \nu_{m}).$$

The completion of C_0^{∞} with respect to the norm (3) will be denoted by H_p . H_p is a kind of Hilbert space. One sees easily

 $H_p \, \supset \, H_{p'} \, \, ext{and} \, \, || \, u \, ||_p \! \leq \! || \, u \, ||_{p'} \, \, ext{if} \, \, p \! < \! p'.$

We set $H_{\infty} = \bigcap_{p < \infty} H_p$, then H_{∞} is a linear topological space with a sequence of semi-norms $||u||_p$ $(p=0, 1, 2, \cdots)$ for $u \in H_{\infty}$. H_{∞} is dense

in H_p for any p, and C_0^{∞} is dense in H_{∞} (hence in H_p). Let $\hat{\varphi}$ be the Fourier transform of $\varphi \in H_p$,

(4)
$$\widehat{\varphi}(\xi) = \frac{1}{\sqrt{2\pi^m}} \int_{E^m} e^{-i\xi \cdot x} \varphi(x) dx = \widetilde{\mathfrak{F}}[\varphi],$$

¹⁾ We use ∂_t for ∂/∂_t , and ∂_x for $\partial/\partial x_1, \dots, \partial/\partial x_m$.

²⁾ $(u_{\rho} \ \rho \downarrow 1, \dots, r)$ means the r-dimensional vector (column) with the components (u_1, \dots, u_r) .

³⁾ The condition (2) is not essential in the general consideration.

⁴⁾ ∂_{μ} is the abbreviation of $\partial/\partial x_{\mu}$.