100. Finite-to-one Closed Mappings and Dimension. II

By Keiô NAGAMI

Department of Mathematics, Ehime University (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1959)

In this note¹⁾ our concern is devoted to mappings defined on spaces of positive dimension, though in the previous note [3] we were mainly concerned with mappings defined on 0-dimensional spaces. Theorem 1 below gives an answer for the problem concerning dimension-raising mappings between non-separable metric spaces, which was raised by W. Hurewicz [1] and solved for the case of separable metric spaces by J. H. Roberts [4]. All notations and terminologies used here are the same as in the previous note [3]. A space R has dimension $\leq \aleph_0$, dim $R \leq \aleph_0$, if R is the countable sum of subspaces R_i with dim $R_i \leq 0$.

Let R and S be topological spaces. Let $\mathfrak{F} = \{F_{\alpha}; \alpha \in A\}$ and $\mathfrak{H} = \{H_{\alpha}; \alpha \in A\}$ be respectively locally finite closed coverings of R and S. Let f be a mapping of R onto S. Let r be a positive integer. If the following conditions are satisfied, (R, \mathfrak{F}, f) is called *the cut of order* r of (S, \mathfrak{F}) .

(1) For every $\alpha \in A$, $f | F_{\alpha}$ is a homeomorphism of F_{α} onto H_{α} .

(2) If order (y, \mathfrak{H}) , the number of closed sets of \mathfrak{H} which contain $y \in S$, is greater than $r, f^{-1}(y)$ consists of one and only one point.

If r_1 =order (y, \mathfrak{H}) is not greater than r, $f^{-1}(y)$ consists of exactly r_1 points.

R is called the cut-space of order *r* obtained from (S, \mathfrak{H}) . \mathfrak{F} is called the derived covering of order *r* and *f* the cut-mapping. We can prove that there exists the cut of order *r* of (S, \mathfrak{H}) for any (S, \mathfrak{H}) and *r* and that the cut is essentially unique.

Let R_0 be a metric space with dim $R_0=n$, $0 < n < \infty$. Let m be an arbitrary integer with $0 \le m < n$. We shall now construct a metric space T with dim T=m and a closed mapping π_0 of T onto R_0 such that for every point p of R_0 $\pi_0^{-1}(p)$ consists of at most n-m+1 points.

By [2] or [3] there exist $\lim A_i = \lim \{A_i, f_{i+1,i}\}$, where A_i are discrete spaces of indices, and a sequence of locally finite closed coverings $\mathfrak{F}_{0i} = \{F(0, \alpha_i); \alpha_i \in A_i\}, i=1, 2, \cdots$, which satisfy the following conditions.

(1) The diameter of each set of $\mathfrak{F}_{0i} < 1/i$.

(2) The order of every $\mathfrak{F}_{0i} \leq n+1$.

¹⁾ The detail of the content of the present note will be published in another place.