100. Finite-toone Closed Mappings and Dimension. II

By Keiô Nagami
Department of Mathematics, Ehime University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1959)

In this note ${ }^{1)}$ our concern is devoted to mappings defined on spaces of positive dimension, though in the previous note [3] we were mainly concerned with mappings defined on 0 -dimensional spaces. Theorem 1 below gives an answer for the problem concerning dimension-raising mappings between non-separable metric spaces, which was raised by W. Hurewicz [1] and solved for the case of separable metric spaces by J. H. Roberts [4]. All notations and terminologies used here are the same as in the previous note [3]. A space R has dimension $\leq \mathcal{N}_{0}$, $\operatorname{dim} R \leq \mathbb{N}_{0}$, if R is the countable sum of subspaces R_{i} with $\operatorname{dim} R_{i} \leq 0$.

Let R and S be topological spaces. Let $\mathfrak{F}=\left\{F_{\alpha} ; \alpha \in A\right\}$ and $\mathfrak{g}=\left\{H_{\alpha}\right.$; $\alpha \in A\}$ be respectively locally finite closed coverings of R and S. Let f be a mapping of R onto S. Let r be a positive integer. If the following conditions are satisfied, (R, \mathfrak{F}, f) is called the cut of order r of ($\mathrm{S}, \mathfrak{5}$).
(1) For every $\alpha \in A, f \mid F_{\alpha}$ is a homeomorphism of F_{α} onto H_{α}.
(2) If order ($y, \mathfrak{5}$), the number of closed sets of \mathfrak{J} which contain $y \in S$, is greater than $r, f^{-1}(y)$ consists of one and only one point. If $r_{1}=\operatorname{order}(y, \mathfrak{S})$ is not greater than $r, f^{-1}(y)$ consists of exactly r_{1} points.
R is called the cut-space of order r obtained from $(S, \mathfrak{y}) . \mathscr{F}$ is called the derived covering of order r and f the cut-mapping. We can prove that there exists the cut of order r of (S, \mathfrak{F}) for any (S, \mathfrak{F}) and r and that the cut is essentially unique.

Let R_{0} be a metric space with $\operatorname{dim} R_{0}=n, 0<n<\infty$. Let m be an arbitrary integer with $0 \leq m<n$. We shall now construct a metric space T with $\operatorname{dim} T=m$ and a closed mapping π_{0} of T onto R_{0} such that for every point p of $R_{0} \pi_{0}^{-1}(p)$ consists of at most $n-m+1$ points.

By [2] or [3] there exist $\lim A_{i}=\lim \left\{A_{i}, f_{i+1, i}\right\}$, where A_{i} are discrete spaces of indices, and a sequence of locally finite closed coverings $\tilde{F}_{0 i}=\left\{F\left(0, \alpha_{i}\right) ; \alpha_{i} \in A_{i}\right\}, i=1,2, \cdots$, which satisfy the following conditions.
(1) The diameter of each set of $\mathfrak{F}_{0 i}<1 / i$.
(2) The order of every $\widetilde{\mho}_{0 i} \leq n+1$.

1) The detail of the content of the present note will be published in another place.
