98. On Locally Q-complete Spaces. III 431 ## By Takesi ISIWATA Tokyo Gakugei University, Tokyo (Comm. by K. Kunugi, M.J.A., Oct. 12, 1959) We assume always that X^{*} is locally Q-complete but not a Q-space. Then there are one-point Q-completions of X [2]. In this paper, we shall investigate some properties of one-point Q-completions of X. We noticed, in [2], that X is open in νX and $X^{\smile}(\nu X-X)^{\beta}$ is a Q-space. We have similarly that if B is any compact subset in $\beta X-X$ which contains $\nu X-X$ then the space $X^{\smile}B$ is also a Q-space, and moreover the space Z obtained from $X^{\smile}B$ by contracting B to a point in B is a one-point Q-completion (Theorem 1 in [2]). In the following, we shall prove that any one-point Q-completion of X is given as an image of a space $X^{\smile}B$ under a continuous mapping φ such that $\varphi \mid X$ is a homeomorphism which leaves every point of X invariant where B is some compact subset in $\beta X-X$ which contains $\nu X-X$. **Lemma 1.** Suppose that $Z=X \subseteq \{p\}$ is a one-point Q-completion of X. Then there is a continuous mapping ψ of νX onto Z such that $\psi(\nu X-X)=\{p\}$, $\psi(x)=x$ for every $x\in X$ and $\psi\mid X$ is a homeomorphism. Proof. X is considered as a uniform space X_1 with the structure generated by $C=\{f\mid X;\ f\in C(Z)\}$ and Z becomes a completion of X_1 . On the other hand, X may be considered as a uniform space X_2 with the structure generated by C(X). Since $C(X)\supset C$ and the identical mapping i is uniformly continuous, i has a continuous extension ψ of νX to Z. Hence, to prove Lemma, it is sufficient to show that $\psi(\nu X-X)=p$. Suppose that $\{a_{\alpha};\ a_{\alpha}\in X\}\to a\in \nu X-X$ and $\psi(a)=b\in X\subset Z$. We take an open neighborhood V(in Z) of b which does not contain p. $i^{-1}(V)$ is open in νX because X is open in νX . By the assumption, for some index α_0 , $\alpha>\alpha_0$ implies $\psi(a_{\alpha})=i(a_{\alpha})\in V$, and hence $i^{-1}(V)\ni a_{\alpha}$ for $\alpha>\alpha_0$. This is a contradiction. We have therefore that $\psi(\nu X-X)=p$. For any point $x \in \mathbb{Z}$, let us put $B(x) = \overline{\psi^{-1}(V)}$ (in βX) where V runs over all neighborhoods (in \mathbb{Z}) of x. Since $\psi(\nu X - X) = p$. B(p) is a compact subset containing $\nu X - X$. **Lemma 2.** $B(x) = \{x\}$ for any $x \in X \subset Z$ and $B(p) \subset \beta X - X$. *Proof.* For any point $y \in X \subset Z$, there is an open neighborhood U (in Z) of $y \in X \subset Z$ which is disjoint from some neighborhood (in Z) of p. We have therefore $B(p) \ni y$, which implies that $B(p) \subset \beta X - X$. Simi- ^{*)}A space X considered here is always a completely regular T_1 -space, and other terminologies used here, for instance "Q-completion," are the same as in [2,3].