93. On the Thue-Siegel-Roth Theorem. I

By Saburô Uchiyama
Department of Mathematics, Hokkaidô University, Sapporo, Japan
(Comm. by Z. Suetuna, M.J.A., Oct. 12, 1959)

1. The main object of this note is to show that the Thue-SiegelRoth theorem can somewhat be refined when the field of reference is an imaginary quadratic number field. The Thue-Siegel-Roth theorem [1] is

Theorem 1. Let K be an algebraic number field of finite degree and let α be algebraic of degree at least 2 over K. Then for each $\kappa>2$, the inequality

$$
\begin{equation*}
|\alpha-\xi|<(H(\xi))^{-\kappa} \tag{1}
\end{equation*}
$$

has only a finite number of solutions ξ in K.
Here $H(\xi)$ denotes the height of ξ, the maximum of the absolute values of the coefficients in the primitive irreducible equation with rational integral coefficients of which ξ is a zero, while we designate by $M(\xi)$ the absolute value of the highest coefficient in that equation for ξ.

Since an algebraic number field K of finite degree has only finitely many subfields and every element of K is a primitive number of some one of its subfields, in order to establish Theorem 1 it is enough to prove that for each $\kappa>2$, the inequality (1) is satisfied by only finitely many primitive numbers ξ in K. In this respect the following theorem will be of some interest:

Theorem 2. Let α be any non-zero algebraic number and let K be an imaginary quadratic number field. If the inequality

$$
\begin{equation*}
|\alpha-\xi|<(M(\xi))^{-\kappa} \tag{2}
\end{equation*}
$$

is satisfied by infinitely many primitive numbers ξ in K, then $\kappa \leqq 1$.
It is clear that $M(\xi) \leqq H(\xi)$ for any fixed ξ and $M(\xi)=1$ for any integral ξ. From this result one can deduce at once the following

Theorem 3. Let α and K be as in Theorem 2. Then for each $\nu>2$, the inequality

$$
\begin{equation*}
0<\left|\alpha-\frac{p}{q}\right|<\frac{1}{|q|^{\nu}} \tag{3}
\end{equation*}
$$

has only a finite number of integer solutions $p, q(q \neq 0)$ in K.
If, in (3), p and $q(q \neq 0)$ are restricted to be rational integers, Theorem 3 reduces to a recent result of K. F. Roth [3], and we may exclude this rational case. Then the fraction p / q with integers p, q ($q \neq 0$) in K is a primitive number ξ in K, and, for any representation $\xi=p^{\prime} / q^{\prime}$ of the number ξ with integers $p^{\prime}, q^{\prime}\left(q^{\prime} \neq 0\right)$ in K, it satisfies

