126. On Equivalence of Modular Function Spaces

By Jyun ISHII

Mathematical Department, Hokkaidô University, Sapporo (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1959)

Let Ω be an abstract space and μ be a totally additive measure defined on a totally additive set class \mathfrak{B} of subsets of Ω satisfying $\bigcup_{\mu(E)<\infty} E=\Omega$.

Let $\Phi(\xi, \omega)$ $(\xi \ge 0, \omega \in \Omega)$ be a function satisfying the following conditions:

1) $0 \leq \Phi(\xi, \omega) \leq \infty$ for all $\xi \geq 0, \ \omega \in \Omega$;

2) $\Phi(\xi, \omega)$ is a measurable function on Ω for all $\xi \ge 0$;

3) $\Phi(\xi, \omega)$ is a non-decreasing convex functions of $\xi \ge 0$ for all $\omega \in \Omega$;

4) $\Phi(0, \omega) = 0$ for all $\omega \in \Omega$;

5) $\Phi(\alpha - 0, \omega) = \Phi(\alpha, \omega)$ for all $\omega \in \Omega$;

6) $\Phi(\xi, \omega) \to \infty$ as $\xi \to \infty$ for all $\omega \in \Omega$;

7) for any $\omega \in \Omega$, there exists $\alpha_{\omega} > 0$ such that $\Phi(\alpha_{\omega}, \omega) < \infty$.

For any measurable function $x(\omega)$ ($\omega \in \Omega$), $\Phi(|x(\omega)|, \omega)$ is also measurable. We shall denote by $L_{\varphi}(\Omega)$ the class of all measurable functions $x(\omega)$ ($\omega \in \Omega$) such that, for some $\alpha = \alpha_x > 0$,

$$\int_{a} \Phi(\alpha | x(\omega)|, \omega) d\mu(\omega) < \infty.$$

We write $x \ge y$ $(x, y \in L_{\phi})$, if $x(\omega) \ge y(\omega)$ for a.e.²⁾ on Ω , then L_{ϕ} is a universally continuous semi-ordered linear space.

If we define a functional

$$m_{\varphi}(x) = \int_{\varphi} \Phi(|x(\omega)|, \omega) d\mu,$$

 m_{φ} satisfies all the modular conditions and furthermore m_{φ} is monotone complete. Such a space L_{φ} with m_{φ} is said to be a modular function space.³⁾

If $\overline{\Phi}(\eta, \omega)$ $(\eta \ge 0, \omega \in \Omega)$ is, for every fixed $\omega \in \Omega$, the complementary function of Φ in the sense of H. W. Young, $\overline{\Phi}$ satisfies all the corresponding properties from 1) to 7) on Φ , and so, we have also a

¹⁾ For the integration, refer, for instance, H. Nakano [4].

²⁾ Here "a.e. (almost everywhere)" means always that "except on some $A \in \mathfrak{B}$ which $\mu(E \cap A) = 0$ for all $\mu(E) < \infty$ ".

³⁾ Modulared function spaces were defined and discussed in H. Nakano [2, Appendices I, II]. For all other definitions and notations used in this note, see the same book, too.