124. On Singular Perturbation of Linear Partial Differential Equations with Constant Coefficients. II

By Hitoshi Kumano-go
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1959)

§ 0. Introduction. Professor M. Nagumo proved in his recent note ${ }^{1)}$ the following theorem on the stability of linear partial differential equations of the form (0)

$$
L_{\mathrm{s}}(u)=\sum_{\mu=0}^{l} P_{\mu}\left(\partial_{x}, \varepsilon\right) \partial_{t}^{\mu} u=f_{\mathrm{s}}(t, x) .^{2}
$$

Definition. We say that the equation (0) is H_{p}-stable for $\varepsilon \downarrow 0$ in $0 \leqq t \leqq T$ with respect to a particular solution $u=u_{0}(t)$ of (0) for $\varepsilon=0$, if $u_{0}(t) \rightarrow u_{0}(t)$ in $H_{p, x}$ uniformly for $0 \leqq t \leqq T$, whenever $f_{0}(t, x) \rightarrow f_{0}(t, x)$ in $H_{p, x}$ uniformly for $0 \leqq t \leqq T$, and $u_{s}(t)=u(t, x, \varepsilon)$ is a generalized $H_{p}-$ solution of (0) such that $\partial_{t}^{j-1} u_{s}(0) \rightarrow \partial_{t}^{j-1} u_{0}(0)$ in $H_{p, x}(j=1, \cdots, l)$.

Theorem A. Let degree of $\left\{P_{\mu}(\xi, \varepsilon)-P_{\mu}(\xi, 0)\right\} \leqq k(\mu=0, \cdots, l)$ and let $u=u_{0}(t)$ be an l-times continuously $H_{p+k, x^{-}}$differentiable solution of (0) for $\varepsilon=0$ in $0 \leqq t \leqq T$. In order that (0) be H_{p}-stable for $\varepsilon \downarrow 0$ with respect to $u=u_{0}(t)$ in $0 \leqq t \leqq T$, it is necessary and sufficient that there exist constants $\varepsilon_{0}>0$ and C such that:

$$
\operatorname{Sup}_{\xi \in \mathbb{E}^{m}} Y_{j}(t, \xi, \varepsilon) \leqq C \quad \text { for } 0 \leqq t \leqq T, 0<\varepsilon \leqq \varepsilon_{0}
$$

and

$$
\operatorname{Sup}_{\xi \in \mathbb{E}^{m}} \int_{0}^{T}\left|P_{l}(\xi, \varepsilon)^{-1} Y_{l}(t, \xi, \varepsilon)\right| d t \leqq C \quad \text { for } 0<\varepsilon \leqq \varepsilon_{0}
$$

where $Y=Y_{j}(t, \xi, \varepsilon)$ are matricial solutions of

$$
\sum_{\mu=0}^{l} P_{\mu}(i \xi, \varepsilon)(d / d t)^{\mu} y=0
$$

with the initial conditions $\partial_{t}^{k-1} Y_{j}(0, \xi, \varepsilon)=\delta_{j k} 1(k=1, \cdots, l)$.
In this note we are concerned with the H_{p}-stability of the equation

$$
\varepsilon \cdot \partial_{t}^{2} u+a \cdot \partial_{t} u+Q\left(\partial_{x}\right) u=f_{s}(t, x)
$$

where a is a complex constant and $Q(i \xi)$ is a polynomial in $\xi \in E^{m}$, and making use of Theorem A we decide the structure of $Q(i \xi)$ in order that this equation be H_{p}-stable. ${ }^{3)}$

I want to take this opportunity to thank Professor M. Nagumo and Mr. K. Ise for their constant assistance.
§1. Main theorems. In this section we shall exhibit three theorems on H_{p}-stability of the equation

$$
\begin{equation*}
\varepsilon \cdot \partial_{t}^{2} u+a \cdot \partial_{t} u+Q\left(\partial_{x}\right) u=f_{s}(t, x) . \tag{1.1}
\end{equation*}
$$

The fundamental solutions of the equation

$$
\varepsilon\left(d^{2} / d t^{2}\right) y+\alpha(d / d t) y+Q(i \xi) y=0
$$

are represented by

1) M. Nagumo: On singular perturbation of linear partial differential equations with constant coefficients. I, Proc. Japan Acad., 35, 449 (1959).
2) We use the same notations and terminology with Nagumo 1).
3) In this note we say H_{p}-stable for simplicity.
