124. On Singular Perturbation of Linear Partial Differential Equations with Constant Coefficients. II

By Hitoshi KUMANO-GO

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1959)

§0. Introduction. Professor M. Nagumo proved in his recent note¹⁾ the following theorem on the stability of linear partial differential equations of the form

$$(0) L_{\varepsilon}(u) = \sum_{\mu=0}^{l} P_{\mu}(\partial_{x}, \varepsilon) \partial_{t}^{\mu} u = f_{\varepsilon}(t, x).^{2}$$

Definition. We say that the equation (0) is H_p -stable for $\varepsilon \downarrow 0$ in $0 \leq t \leq T$ with respect to a particular solution $u = u_0(t)$ of (0) for $\varepsilon = 0$, if $u_{\epsilon}(t) \rightarrow u_0(t)$ in $H_{p,x}$ uniformly for $0 \leq t \leq T$, whenever $f_{\epsilon}(t, x) \rightarrow f_0(t, x)$ in $H_{p,x}$ uniformly for $0 \leq t \leq T$, and $u_{\epsilon}(t) = u(t, x, \varepsilon)$ is a generalized H_p -solution of (0) such that $\partial_t^{i-1}u_{\epsilon}(0) \rightarrow \partial_t^{i-1}u_0(0)$ in $H_{p,x}$ $(j=1,\cdots,l)$.

Theorem A. Let degree of $\{P_{\mu}(\xi, \varepsilon) - P_{\mu}(\xi, 0)\} \leq k \ (\mu = 0, \dots, l) \text{ and}$ let $u = u_0(t)$ be an l-times continuously $H_{p+k,x}$ -differentiable solution of (0) for $\varepsilon = 0$ in $0 \leq t \leq T$. In order that (0) be H_p -stable for $\varepsilon \downarrow 0$ with respect to $u = u_0(t)$ in $0 \leq t \leq T$, it is necessary and sufficient that there exist constants $\varepsilon_0 > 0$ and C such that:

$$\sup_{\xi\in \mathbb{Z}^m} Y_j(t,\xi,\varepsilon) {\leq} C \quad for \ 0 {\leq} t {\leq} T, \ 0 {<} \varepsilon {\leq} \varepsilon_0$$

and

$$\sup_{\xi\in E^m} \int_0^T |P_l(\xi, arepsilon)^{-1} Y_l(t, \xi, arepsilon)| dt {\leq} C \quad for \;\; 0 {<} arepsilon {\leq} arepsilon_0$$

where $Y = Y_j(t, \xi, \varepsilon)$ are matricial solutions of $\sum_{\mu=0}^{l} P_{\mu}(i\xi, \varepsilon)(d/dt)^{\mu}y = 0$

with the initial conditions $\partial_t^{k-1}Y_j(0,\xi,\varepsilon) = \delta_{jk}\mathbf{1}$ $(k=1,\cdots,l)$.

In this note we are concerned with the H_p -stability of the equation $\varepsilon \cdot \partial_t^2 u + a \cdot \partial_t u + Q(\partial_x)u = f_{\varepsilon}(t, x)$

where a is a complex constant and $Q(i\xi)$ is a polynomial in $\xi \in E^m$, and making use of Theorem A we decide the structure of $Q(i\xi)$ in order that this equation be H_n -stable.⁸⁾

I want to take this opportunity to thank Professor M. Nagumo and Mr. K. Ise for their constant assistance.

§1. Main theorems. In this section we shall exhibit three theorems on H_v -stability of the equation

(1.1)
$$\varepsilon \cdot \partial_t^2 u + a \cdot \partial_t u + Q(\partial_x) u = f_s(t, x).$$

The fundamental solutions of the equation

$$\varepsilon(d^2/dt^2)y + a(d/dt)y + Q(i\xi)y = 0$$

are represented by

¹⁾ M. Nagumo: On singular perturbation of linear partial differential equations with constant coefficients. I, Proc. Japan Acad., **35**, 449 (1959).

²⁾ We use the same notations and terminology with Nagumo 1).

³⁾ In this note we say H_p -stable for simplicity.