8. On Transformation of Manifolds

By Joseph Weier
(Comm. by K. Kunugi, m.J.A., Jan. 12, 1960)

Let $m>n>r \geq 1$ be integers, suppose M is an m-dimensional and N an n-dimensional oriented closed polyhedral manifold, let S be the simplicial image of an oriented r-sphere situated in N, and $f: M \rightarrow N$ a continuous mapping. Then one may suppose that $f^{-1}(S)$ is a finite polyhedron R in M satisfying

$$
\operatorname{dim} R=m-n+r
$$

Let A_{1}, A_{2}, \cdots be the ($m-n+r$)-simplexes of a simplicial decomposition of R, moreover A one of the A_{i}, and A^{*} an orientation of A. The simplexes used here are open and rectilinear. If a is a point in A, one can suppose S is smooth in a neighborhood of the point $b=f(\alpha)$. Let B be an r-simplex with $b \in B \subset S$. Define C to be an $(n-r)$-simplex in M perpendicular to A, and D an $(n-r)$-simplex in N perpendicular with respect to B such that $A \cap C=a, B \cap D=b, R \cap \bar{C}=a$, and $S \cap \bar{D}=b$. For every point $p \in \partial C$, let $\varphi(p)$ denote the vertical projection of $f(p)$ on D parallel to B. Then $\varphi(\partial C) \subset D-b$. For $p \in \partial C$, let $\varphi^{\prime}(p)$ be the vertical projection of $\varphi(p)$ on ∂D out of b. By C^{*} we denote an orientation of C such that $\left(A^{*}, C^{*}\right)$ gives the positive orientation of M, by B^{*} the orientation of B induced by S, and by D^{*} an orientation of D such that $\left(B^{*}, D^{*}\right)$ furnishes the positive orientation of N. Let $\beta\left(A^{*}\right)$ be the Brouwer degree of the map $\varphi^{\prime}: \partial B^{*} \rightarrow \partial D^{*}$.

Let a_{k} be an orientation of A_{k} and β_{k} the number $\beta\left(a_{k}\right)$. Then $\sum \beta_{k} a_{k}$ represents a finite $(m-r+r)$-cycle that we will denote by $\sigma_{f}(S)$ as well. If the continuous r-sphere S^{\prime} is homotopic to S within N, then

$$
\sigma_{f}(S) \sim \sigma_{f}\left(S^{\prime}\right)
$$

Let $\pi_{r}(N)$ be the r-dimensional Hurewicz group of N. Define h to be the homotopy class of S, and $\zeta(h)$ to be the homology class of $\sigma_{f}(S)$. Then the mapping $\zeta: \pi_{r}(N) \rightarrow H_{m-n+r}(M)$, where $H_{i}(M)$ means the i dimensional integral Betti group of M, is a homomorphism. Of course, the latter is related to known inverse homomorphisms. But for the following it is important to have an exact geometric realization of these homomorphisms; a problem to which already Whitney [4] has hinted.

Now suppose $r=2 n-m-1 \geq 2$, and let $\pi_{r}^{\zeta}(N)$ be the kernel of the homomorphism ζ, moreover h_{r}^{ζ} an element of $\pi_{r}^{\zeta}(N)$, and Q an oriented continuous sphere of h_{r}^{ζ}. One may suppose $f^{-1}(Q)$ is an $(m-n+r)$ polyhedron in M. Denote the cycle $\sigma_{f}(Q)$ by z as well. Evidently,

