8. On Transformation of Manifolds

By Joseph WEIER

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1960)

Let $m > n > r \ge 1$ be integers, suppose M is an m-dimensional and N an n-dimensional oriented closed polyhedral manifold, let S be the simplicial image of an oriented r-sphere situated in N, and $f: M \to N$ a continuous mapping. Then one may suppose that $f^{-1}(S)$ is a finite polyhedron R in M satisfying

$$\dim R = m - n + r.$$

Let A_1, A_2, \cdots be the (m-n+r)-simplexes of a simplicial decomposition of R, moreover A one of the A_i , and A^* an orientation of A. The simplexes used here are open and rectilinear. If a is a point in A, one can suppose S is smooth in a neighborhood of the point b=f(a). Let B be an r-simplex with $b \in B \subset S$. Define C to be an (n-r)-simplex in M perpendicular to A, and D an (n-r)-simplex in N perpendicular with respect to B such that $A \cap C = a$, $B \cap D = b$, $R \cap \overline{C} = a$, and $S \cap \overline{D} = b$. For every point $p \in \partial C$, let $\varphi(p)$ denote the vertical projection of f(p)on D parallel to B. Then $\varphi(\partial C) \subset D - b$. For $p \in \partial C$, let $\varphi'(p)$ be the vertical projection of $\varphi(p)$ on ∂D out of b. By C^* we denote an orientation of C such that (A^*, C^*) gives the positive orientation of M, by B^* the orientation of B induced by S, and by D^* an orientation of Dsuch that (B^*, D^*) furnishes the positive orientation of N. Let $\beta(A^*)$ be the Brouwer degree of the map $\varphi': \partial B^* \to \partial D^*$.

Let a_k be an orientation of A_k and β_k the number $\beta(a_k)$. Then $\sum \beta_k a_k$ represents a finite (m-r+r)-cycle that we will denote by $\sigma_f(S)$ as well. If the continuous *r*-sphere S' is homotopic to S within N, then

$$\sigma_f(S) \sim \sigma_f(S').$$

Let $\pi_r(N)$ be the *r*-dimensional Hurewicz group of *N*. Define *h* to be the homotopy class of *S*, and $\zeta(h)$ to be the homology class of $\sigma_f(S)$. Then the mapping $\zeta:\pi_r(N) \to H_{m-n+r}(M)$, where $H_i(M)$ means the *i*dimensional integral Betti group of *M*, is a homomorphism. Of course, the latter is related to known inverse homomorphisms. But for the following it is important to have an exact geometric realization of these homomorphisms; a problem to which already Whitney [4] has hinted.

Now suppose $r=2n-m-1\geq 2$, and let $\pi_r^{\varsigma}(N)$ be the kernel of the homomorphism ζ , moreover h_r^{ς} an element of $\pi_r^{\varsigma}(N)$, and Q an oriented continuous sphere of h_r^{ς} . One may suppose $f^{-1}(Q)$ is an (m-n+r)-polyhedron in M. Denote the cycle $\sigma_r(Q)$ by z as well. Evidently,