7. A Class of Quasi-normed Spaces

By Kiyoshi Iséki

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1960)

A non-Archimedean normed space was considered by A. F. Monna [2] and I. S. Cohen [1]. We shall consider a non-Archimedean quasinormed space. By a non-Archimedean quasi-normed space with power r, we shall mean a linear space E over a commutative field K such that to every x of E there corresponds a real number ||x|| such that 1) ||x|| > 0 for $x \neq 0$.

2) $||x+y|| \le Max(||x||, ||y||)$ for x, y of E.

3) $||\lambda x|| = |\lambda|^r ||x||$ for $\lambda \in K$ and $x \in E$,

where $|\lambda|$ is a non-Archimedean valuation of K.

It is clear that the function d(x, y) = ||x-y|| defines a metric on the space E.

Now we shall show the following

Proposition 1. Let F be a closed linear subspace of E. If the sequence $\{x_n+a_ny\}$ converges in E for a fixed element $y \in F$ and $x_n \in F$, $a_n \in K$, then $\{x_n\}$ and $\{a_n\}$ are convergent.

Proof. We shall prove that $x_n + a_n y \to 0$ $(n \to \infty)$ implies $a_n \to 0$. Suppose that a_n does not converge, then there is a subsequence $\{a_{k_n}\}$ such that $|a_{k_n}| \ge \varepsilon$ for some positive number ε . Hence

$$\| a_{k_n}^{-1}(x_{k_n} + a_{k_n}y) = | a_{k_n}^{-1}|^r \| x_{k_n} + a_{k_n}y \|$$

 $\leq \varepsilon^{-r} \| x_{k_n} + a_{k_n}y \|$

implies $a_{k_n}^{-1}(x_{k_n}+a_{k_n}y)=a_{k_n}^{-1}x_{k_n}+y \to 0$. From $a_{k_n}^{-1}x_{k_n} \in F$ and closedness of F, we have $y \in F$.

For the general case, from the existence of $\lim_{n\to\infty} (x_n+a_ny)$, we have $(x_{n+1}-x_n)+(a_{n+1}-a_n)y\to 0$, and we can conclude $a_{n+1}-a_n\to 0$. Hence, by a property of non-Archimedean valuation $\{a_n\}$ is a fundamental sequence and we can find the limit of $\{a_n\}$.

Proposition 2. Any finite dimensional subspace of E is closed.

Proof. If F is a closed linear subspace of E, then $F + \lfloor y \rfloor$ is closed, where $F + \lfloor y \rfloor$ denotes the minimal linear subspace generated by F and y, i.e. $F + \lfloor y \rfloor = \{x + \alpha y, x \in F, \alpha \in K\}$. Suppose that $y \in F$, and $\{x_n + \alpha_n y\}(x_n \in F, \alpha_n \in K)$ converges to an element of E, then, by Proposition 1, x_n converges to an element x of E, and α_n converges to α of E. Since F is closed, the element x is contained in F. Therefore $x + \alpha y$ $\in F + \lfloor y \rfloor$, and $F + \lfloor y \rfloor$ is closed.

Theorem 1. Any finite dimensional non-Archimedean normed space E is topologically Euclidean and is complete.