3. Certain Generators of Non-hyperelliptic Fields of Algebraic Functions of Genus ≥ 3

By Satoshi ARIMA

Department of Mathematics, Musashi Institute of Technology, Tokyo (Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1960)

Let Ω be an algebraically closed field of characteristic 0, and Ka field of algebraic functions of one variable over Ω whose genus will be denoted by G. We shall denote the elements of K by letters like x_i, x, y, u, u', v ; the divisors by E_i , prime divisors by P, the divisor classes of E_i by $\overline{E_i}$. The divisor classes of degree 0 form a group, which becomes the Jacobian variety of K when Ω is the field C of complex numbers. We shall consider the elements of this group whose orders are finite and divide 2. They will be called *two-division points* of K. They form a group \mathfrak{g} isomorphic to the direct sum of 2G cyclic groups of order 2, so that there are 2^{2G} two-division points $\overline{E_i}, 1 \leq i \leq 2^{2G}$, of K (cf. [1, p. 176, Th. 16 and Cor. to Th. 16] and [2, p. 79]). Let E_i be arbitrary representatives of $\overline{E_i}, 1 \leq i \leq 2^{2G}$, and x_i an element of K such that $(x_i) = E_i^2$. Now we consider the subfield

$$k = \Omega(x_1, \cdots, x_{2^{2G}})$$

of K. We shall show in Theorem 1 that K=k (i.e. that K is generated by the functions x_i determined by two-division points \overline{E}_i if K is not hyperelliptic and $G \ge 3$, and in Theorem 2 that [K:k]=1, 2 or 4 if K is hyperelliptic.

The above notations will be used throughout the paper. The genus of k will be denoted by g. We put [K:k] = n.

LEMMA. If n>1 and $G \ge 2$, then g=0 and $n \le 2 + \frac{1}{G-3/2}$.

PROOF. We use Riemann-Hurwitz's formula:

(1)
$$2G-2=n(2g-2)+\sum_{p}(e_{p}-1),$$

where P runs over the prime divisors of K and e_P is the ramification index of P. We recall first, that G > g since $G \ge 2$, and that the number of 2-division points of k is 2^{2g} . Denote by $(x_i)_K$ and $(x_i)_k$ the divisors of x_i in K and k respectively. We have

$$(x_i)_K = E_i^2 = \operatorname{Con}_{k/K}(x_i)_k.$$

Now every divisor $(x_i)_k$ is either a square of another divisor: $(x_i)_k = e_i^2$ or not a square of any divisor: $(x_i)_k = e_i$; but we can show here that at most 2^{2q} divisors $(x_i)_k$ are squares of other divisors; in fact, if $(x_i)_k = e_i^2$, then e_i represents a 2-division point of k, and it follows from