3. Certain Generators of Non-hyperelliptic Fields of Algebraic Functions of Genus $\geqq 3$

By Satoshi Arima
Department of Mathematics, Musashi Institute of Technology, Tokyo
(Comm. by Z. Suetuna, m.J.A., Jan. 12, 1960)

Let Ω be an algebraically closed field of characteristic 0 , and K a field of algebraic functions of one variable over Ω whose genus will be denoted by G. We shall denote the elements of K by letters like $x_{i}, x, y, u, u^{\prime}, v$; the divisors by E_{i}^{\prime}, prime divisors by P, the divisor classes of E_{i} by \bar{E}_{i}. The divisor classes of degree 0 form a group, which becomes the Jacobian variety of K when Ω is the field \boldsymbol{C} of complex numbers. We shall consider the elements of this group whose orders are finite and divide 2. They will be called two-division points of K. They form a group g isomorphic to the direct sum of $2 G$ cyclic groups of order 2 , so that there are $2^{2 G}$ two-division points $\bar{E}_{i}, 1 \leqq$ $i \leqq 2^{2 G}$, of K (cf. [1, p. 176, Th. 16 and Cor. to Th. 16] and [2, p. 79]). Let E_{i} be arbitrary representatives of $\overline{E_{i}}, 1 \leqq i \leqq 2^{2 G}$, and x_{i} an element of K such that $\left(x_{i}\right)=E_{i}{ }^{2}$. Now we consider the subfield

$$
k=\Omega\left(x_{1}, \cdots, x_{2^{2 G}}\right)
$$

of K. We shall show in Theorem 1 that $K=k$ (i.e. that K is generated by the functions x_{i} determined by two-division points \bar{E}_{i} if K is not hyperelliptic and $G \geqq 3$, and in Theorem 2 that $[K: k]=1$, 2 or 4 if K is hyperelliptic.

The above notations will be used throughout the paper. The genus of k will be denoted by g. We put $[K: k]=n$.

Lemma. If $n>1$ and $G \geqq 2$, then $g=0$ and $n \leqq 2+\frac{1}{G-3 / 2}$.
Proof. We use Riemann-Hurwitz's formula:

$$
\begin{equation*}
2 G-2=n(2 g-2)+\sum_{P}\left(e_{P}-1\right), \tag{1}
\end{equation*}
$$

where P runs over the prime divisors of K and e_{P} is the ramification index of P. We recall first, that $G>g$ since $G \geqq 2$, and that the number of 2 -division points of k is $2^{2 g}$. Denote by $\left(x_{i}\right)_{K}$ and $\left(x_{i}\right)_{k}$ the divisors of x_{i} in K and k respectively. We have

$$
\left(x_{i}\right)_{K}=E_{i}^{2}=\operatorname{Con}_{k / K}\left(x_{i}\right)_{k} .
$$

Now every divisor $\left(x_{i}\right)_{k}$ is either a square of another divisor: $\left(x_{i}\right)_{k}$ $=e_{i}^{2}$ or not a square of any divisor: $\left(x_{i}\right)_{k}=e_{i}$; but we can show here that at most $2^{2 g}$ divisors $\left(x_{i}\right)_{k}$ are squares of other divisors; in fact, if $\left(x_{i}\right)_{k}=e_{i}^{2}$, then e_{i} represents a 2 -division point of k, and it follows from

