2. On Ideals Defining Non-Singular Algebraic Varieties

By Shizuo Endo

(Comm. by Z. SUETUNA, M.J.A., Jan. 12, 1960)

The purpose of this note is to prove the following

Theorem 1. Let V be a non-singular irreducible algebraic variety of dimension d, defined over a field K in an affine space A^n . Then the ideal defining V over K is generated by at most (n-d)(d+1)+1elements.

To simplify our expression, we shall denote with $N_R(a)$ the minimum number of elements generating the ideal a in a Noetherian ring R. Our theorem means $N_R(\mathfrak{p}) \leq (n-d)(d+1)+1$, when R is the polynomial ring of n variables $K[X_1, X_2, \dots, X_n]$ over K and \mathfrak{p} is the prime ideal defining V over K. Now R is a regular domain as defined e.g. in my former paper [2] and R/\mathfrak{p} becomes also a regular domain as \mathfrak{p} defines a non-singular variety. The rank of \mathfrak{p} is n-d, as V is ddimensional (cf. [1]). So our Theorem 1 is contained in the following more general

Theorem 2. Let R be a regular ring of dimension d and \mathfrak{p} be a prime ideal of rank s in R such that R/\mathfrak{p} is also a regular ring. Then $N_R(\mathfrak{p}) \leq s(d-s+1)+1$.

We shall begin with some lemmas.

Lemma 1. Let R be a semi-local ring with maximal ideals \mathfrak{m}_1 , $\mathfrak{m}_2, \dots, \mathfrak{m}_s$ and $\mathfrak{a} = (a_1, a_2, \dots, a_s)$ be any ideal generated by s elements in R. Then the simultaneous equations $x \equiv a_i \pmod{\mathfrak{a}_i}$ $1 \le i \le s$, have a solution in R.

Proof. Since R is semi-local, we have $R = (\bigcap_{j \neq i} \mathfrak{m}_j, \mathfrak{m}_i)$ for any *i*. So there exist elements e_i, d_i for any *i* such that $1 = e_i + d_i$, where $e_i \notin \mathfrak{m}_i, \in \bigcap_{j \neq i} \mathfrak{m}_j$ and $d_i \in \mathfrak{m}_i$. Then, if we set $a = \sum_{i=1}^s e_i a_i$, this is a solution as is required.

Lemma 2. Let R be a local ring with a maximal ideal m, a be any ideal of R and b be an ideal of R contained in a. Then, if a=b+am, we have a=b.

Proof. Set $\overline{R} = R/b$, $\overline{a} = a/b$ and $\overline{m} = m/b$. Then, by our assumption, we have $\overline{m} \,\overline{a} = \overline{a}$. So, $\overline{a} \subset \bigcap_{k=1}^{\infty} \overline{m}^k$. Since \overline{R} is a local ring, we have, by Krull's theorem, $\bigcap_{k=1}^{\infty} \overline{m}^k = (0)$. That is, $\overline{a} = (0)$. This shows a = b.

Lemma 3. Let R be a Noetherian ring and $\mathfrak{a}, \mathfrak{b}$ be two ideals of R such that $\mathfrak{a} \supset \mathfrak{b}$. If $\mathfrak{a}R_{\mathfrak{m}} = \mathfrak{b}R_{\mathfrak{m}}$ for any maximal ideal \mathfrak{m} of R, we have $\mathfrak{a} = \mathfrak{b}$.