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In this paper we shall discuss the integration of a given function
of a complex variable along a closed Jordan curve which encloses its
denumerably infinite set of poles and its essential singularities, by
making use of the properties of a compact normal operator in an
abstract Hilbert space § and of linear functionals with domain $.

Theorem 1. Let f(2) be holomorphic at all points of the closure
D of a simply connected domain D in the complex i-plane, except at
its poles {1,}eD tending to the point 1=0 interior to D and at its
non-isolated essential singularity A=0.

If the principal part of the expansion of f(1) at any pole 2, is
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where the complex curvilinear integration along the boundary oD of
D is taken in the positive (anti-clockwise) direction.

Proof. Let {¢,} be an arbitrary complete orthonormal system in
the abstract complex Hilbert space £ which is complete, separable and
infinite dimensional, and let E, be the orthogonal projection of £ onto
the subspace determined by ¢,.

If we now define N by N=3S)1,E,, it is easily verified that N has
n=1
the following properties:

1° the convergence of iann is uniform, that is, ‘ N ——Epj B,
n=1 n=1

-0, (p-——)oo);

2° {2,} is the point spectrum of N, and E, is the characteristic
projection of N corresponding to 4, n=1,2,8,.--;

3° N is a compact normal operator in $ [1].

Since every linear continuous functional L(y) on £ can be put in
the form L(y)=(y,x) where the generating element xc¢$ is uniquely
determined by the functional L [4], from now on we shall denote by
L, the functional L associated with .

Next we put
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