128 [Vol. 36,

35. An Application of a Compact Normal Operator in Hilbert Spaces to the Theory of Functions

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by K. Kunugi, M.J.A., March 12, 1960)

In this paper we shall discuss the integration of a given function of a complex variable along a closed Jordan curve which encloses its denumerably infinite set of poles and its essential singularities, by making use of the properties of a compact normal operator in an abstract Hilbert space $\mathfrak F$ and of linear functionals with domain $\mathfrak F$.

Theorem 1. Let $f(\lambda)$ be holomorphic at all points of the closure \overline{D} of a simply connected domain D in the complex λ -plane, except at its poles $\{\lambda_n\} \in D$ tending to the point $\lambda = 0$ interior to D and at its non-isolated essential singularity $\lambda = 0$.

If the principal part of the expansion of $f(\lambda)$ at any pole λ_n is given by $\frac{\alpha_n}{\lambda - \lambda_n}$ and if $\sum_{n=1}^{\infty} |\alpha_n| < \infty$, then

$$\frac{1}{2\pi i} \int_{\partial D} f(\lambda) d\lambda = \sum_{n=1}^{\infty} \alpha_n,$$

where the complex curvilinear integration along the boundary ∂D of D is taken in the positive (anti-clockwise) direction.

Proof. Let $\{\varphi_n\}$ be an arbitrary complete orthonormal system in the abstract complex Hilbert space $\mathfrak F$ which is complete, separable and infinite dimensional, and let E_n be the orthogonal projection of $\mathfrak F$ onto the subspace determined by φ_n .

If we now define N by $N = \sum_{n=1}^{\infty} \lambda_n E_n$, it is easily verified that N has the following properties:

1° the convergence of $\sum_{n=1}^{\infty} \lambda_n E_n$ is uniform, that is, $\left\| N - \sum_{n=1}^{p} \lambda_n E_n \right\| \to 0$, $(p \to \infty)$;

 2° $\{\lambda_n\}$ is the point spectrum of N, and E_n is the characteristic projection of N corresponding to λ_n , $n=1, 2, 3, \cdots$;

 3° N is a compact normal operator in \mathfrak{H} [1].

Since every linear continuous functional L(y) on $\mathfrak D$ can be put in the form L(y) = (y,x) where the generating element $x \in \mathfrak D$ is uniquely determined by the functional L [4], from now on we shall denote by L_x the functional L associated with x.

Next we put

$$x = \sum_{n=1}^{\infty} \sqrt{\alpha_n} \varphi_n, \quad \widetilde{x} = \sum_{n=1}^{\infty} \sqrt{\overline{\alpha}_n} \varphi_n \quad ((\sqrt{\alpha_n} \varphi_n, \sqrt{\overline{\alpha}_n} \varphi_n) = \alpha_n)$$