34. A Characteristic Property of L_{ρ} -Spaces (p>1). II

By Koji Honda

Muroran Institute of Technology

(Comm. by K. KUNUGI, M.J.A., March 12, 1960)

In the previous paper,¹⁾ we gave a characteristic property of L_p -spaces (p>1). The purpose of this paper is to give another characterization.

In the case of L_p (p>1), the transformation (1) $Tx(t) = |x(t)|^{p-1} \cdot \operatorname{sgn} x(t)$

is a one-to-one correspondence between L_p and L_q (q=p/p-1), and the functional (called a modular)

(2)
$$m(x) = \int_{0}^{1} (T\xi x, x) d\xi = \frac{1}{p} \int_{0}^{1} |x(t)|^{p} dt$$

is well defined. Putting

$$(3) ||x|| = \inf_{m(\xi x) \le 1} \frac{1}{|\xi|},$$

we get a norm of L_p and

$$||x|| = \left(\frac{1}{p}\int_{0}^{1}|x(t)|^{p}dt\right)^{\frac{1}{p}}$$
 $(x \in L_{p}).$

The conjugate norm of it is

$$(4) \qquad \qquad ||\overline{x}|| = \sup_{\|x\| \leq 1} |(\overline{x}, x)| = p^{\frac{1}{p}} \left(\int_{0}^{1} |\overline{x}(t)|^{q} dt \right)^{\frac{1}{q}} \quad (\overline{x} \in L_{q}).$$

Then, it is easily seen that the transformation (1) is norm-preserving: ||x|| = ||y|| in L_p implies ||Tx|| = ||Ty|| in L_q .

In this paper, we will prove that this property of T is characteristic for L_p (p>1) among such Banach spaces that have some transformations like (1), namely, conjugately similar spaces.

Definition. A universally continuous semi-ordered linear space R is said to be *conjugately similar*²⁾ if R is reflexive and there exists a one-to-one transformation T from R onto its conjugate space \overline{R} with the following properties:

(i) T(-a) = -Ta $(a \in R);$

(ii) $Ta \leq Tb$ if and only if $a \leq b$ $(a, b \in R)$;

(iii) (Ta, a)=0 implies a=0.

The above transformation T is called a *conjugately similar correspondence*.

¹⁾ K. Honda and S. Yamamuro [1].

²⁾ Throughout this paper, notations and terminologies are according to H. Nakano [2].