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Among the results of this paper are some generalizations of
results by Iséki [47] and Isiwata [5] concerning convergence properties
for sequences of real-valued continuous functions. In particular it is
shown that an arbitrary topological space X is pseudo-compact if
and only if every sequence of continuous, real-valued functions which
converges in some admissible (jointly continuous) topology for C(X)
converges uniformly. An additional characterization of pseudo-compact
spaces is the following: If X satisfies the first axiom of countability,
then X is pseudo-compact if and only if every sequence which converges
in the compact-open topology on C(X) converges uniformly.

We define several types of convergence for sequences of functions
in C(X), the ring of continuous, real-valued functions on an arbitrary
topological space X.

(a) {f.} converges to f uniformly at each point of X[ f,—~f(UP)]
if, for each x€X and ¢ > 0 there is an integer N and a neighborhood
U, of x such that |f.(y)—f(¥)| <e, whenever yeU, and n>N.

(b) {f.} converges locally uniformly [f,—~f(LU)] if, for each
xeX, there is a neighborhood of % on which {f,} converges to f
uniformly.

(e) {f.} converges strictly continuously to f[f,~>f(SC)] if,
whenever f(x,) converges, f,(x,) converges to the same limit. (See [4].)

(d) {f.} converges jointly to f[f,—~f(J)] if {f.} converges to
S in some admissible topology for C(X), i.e. a topology in which
(f, x)=>f(x) is a continuous mapping of C(X)X X into the real numbers.
(See [5].)

In this paper we consider only continuous real-valued functions on
a topological space X and by convergence we mean convergence to an
element of C(X).

THEOREM 1. In any topological space X the following are equiva-
lent.

(i) X is pseudo-compact.

(ii) Ewery sequence of continuous functions which converges
uniformly at each point of X converges uniformly.

(iii) Ewvery sequence of continuous functions which converges
locally uniformly converges uniformly.



