29. On Pseudo-compact Spaces and Convergence of Sequences of Continuous Functions

By R. W. BAGLEY

Mississippi Southern College, Hattisburg, Mississippi, U.S.A. (Comm. by K. KUNUGI, M.J.A., March 12, 1960)

Among the results of this paper are some generalizations of results by Iséki [4] and Isiwata [5] concerning convergence properties for sequences of real-valued continuous functions. In particular it is shown that an arbitrary topological space X is pseudo-compact if and only if every sequence of continuous, real-valued functions which converges in some admissible (jointly continuous) topology for C(X)converges uniformly. An additional characterization of pseudo-compact spaces is the following: If X satisfies the first axiom of countability, then X is pseudo-compact if and only if every sequence which converges in the compact-open topology on C(X) converges uniformly.

We define several types of convergence for sequences of functions in C(X), the ring of continuous, real-valued functions on an arbitrary topological space X.

(a) $\{f_n\}$ converges to f uniformly at each point of $X[f_n \rightarrow f(UP)]$ if, for each $x \in X$ and $\varepsilon > 0$ there is an integer N and a neighborhood U_x of x such that $|f_n(y) - f(y)| < \varepsilon$, whenever $y \in U_x$ and $n \ge N$.

(b) $\{f_n\}$ converges locally uniformly $[f_n \rightarrow f(LU)]$ if, for each $x \in X$, there is a neighborhood of x on which $\{f_n\}$ converges to f uniformly.

(c) $\{f_n\}$ converges strictly continuously to $f[f_n \rightarrow f(SC)]$ if, whenever $f(x_n)$ converges, $f_n(x_n)$ converges to the same limit. (See [4].)

(d) $\{f_n\}$ converges jointly to $f[f_n \rightarrow f(J)]$ if $\{f_n\}$ converges to f in some admissible topology for C(X), i.e. a topology in which $(f, x) \rightarrow f(x)$ is a continuous mapping of $C(X) \times X$ into the real numbers. (See [5].)

In this paper we consider only continuous real-valued functions on a topological space X and by convergence we mean convergence to an element of C(X).

THEOREM 1. In any topological space X the following are equivalent.

(i) X is pseudo-compact.

(ii) Every sequence of continuous functions which converges uniformly at each point of X converges uniformly.

(iii) Every sequence of continuous functions which converges locally uniformly converges uniformly.