28. On Orientable Manifolds of Dimension Three

By Hiroshi Yamasuge and Yoshihiro Saito
(Comm. by K. Kunugi, m.J.A., March 12, 1960)

Let M be a closed orientable differentiable manifold of dimension 3 and f be a function on $M \times I$ where $I=[-1,1]$. Let $x_{i}(i=1,2,3)$ be a local coordinate system of M and t be the parameter varying on I. We write f_{t} instead of f when we consider that f is a function on M for fixed t. A point at which every first derivative of f_{t} with respect to x_{i} vanishes is called stational point and it is called ordinary stational point or super stational point according as: $\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right) \neq 0$ or $\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)=0$.

If the origin $x_{i}=0(i=1,2,3)$ is an ordinary stational point of f_{0}, in a neighborhood of this point f_{t} becomes

$$
f_{t}=a(t)+\Sigma a_{i j}(t) x_{i} x_{j}
$$

where $|t|$ is small and $\operatorname{det}\left(\alpha_{i j}(0)\right) \neq 0$.
And if $x_{i}=0$ is a super stational point of f_{0}, by a suitable coordinate system f_{t} is represented as

$$
f_{t}=c+c_{0} t+\sqrt{-c_{1} t} x_{1}^{3}+c_{2} x_{2}^{2}+c_{3} x_{3}^{3}+\frac{1}{3} x_{1}^{3}
$$

where $x_{2}=o(\sqrt{|t|})$ and $x_{3}=o(\sqrt{|t|})$. Here we can assume that all c_{ν} ($\nu=0$, $1,2,3$) are not 0 . Hence for a small $|t|$ we have two stational points $(0,0,0)$ and $\left(-2 \sqrt{-c_{1} t}, 0,0\right)$ of f_{t}. At the point $(0,0,0)$ or $\left(-2 \sqrt{-c_{1} t}, 0\right.$, $0) f_{t}$ is represented as $c+c_{0} t+\sqrt{-c_{1} t} x_{1}^{2}+c_{2} x_{2}^{2}+c_{3} x_{3}^{2}$ or $c+c_{0} t-\sqrt{-c_{1} t}\left(x_{1}\right.$ $\left.+2 \sqrt{-c_{1} t}\right)^{2}+c_{2} x_{2}^{2}+c_{3} x_{3}^{2}$ where all $c_{\nu}(\nu=0,1,2,3)$ are not zero. We call a stational point to be type (μ) if the non-degenerate diagonal quadratic form in the Taylor's expansion of f_{t} at this point has μ negative terms.
Suppose the above origin is type (μ) then $\left(-2 \sqrt{-c_{1} t}, 0,0\right)$ is type $(\mu+1)$ and we call the super stational point $(0,0,0)$ of f_{0} to be type $(\mu, \mu+1)$ or ($\mu+1, \mu$) according as $c_{1}<0$ or $c_{1}>0$. We see easily that values of t on the locus of stational points take the minimums or the maximums at points of type $(\mu, \mu+1)$ or ($\mu+1, \mu$).

Let D and D^{\prime} be two solid spheres with n holes as Fig. 1 and σ a homeomorphism of ∂D to ∂D^{\prime} and $D{ }_{\sigma} D^{\prime}$ the manifold defined by identifying ∂D and ∂D^{\prime} by σ.

Now we consider the necessary and sufficient condition so that $D{ }_{\sigma} D^{\prime}$ is diffeomorphic with $D_{\tau} \smile D^{\prime}$. Clearly we can construct a function g on $D_{\sigma}^{\smile} D^{\prime}$ satisfying the following conditions.
a) $g<0$ in $D-\partial D, g=0$ on ∂D and $g>0$ in $D^{\prime}-\partial D^{\prime}$.

