No. 3]

27. On the mod p Hopf Invariant

By Tsuneyo YAMANOSHITA

Department of Mathematics, Musashi Institute of Technology, Tokyo (Comm. by Z. Suetuna, M.J.A., March 12, 1960)

J. F. Adams [1] has proved that there is no element of Hopf invariant one in $\pi_{2n-1}(S^n)$ $(n \ge 16)$.

In other words, his result may be expressed as follows:

If p=2, mod p Hopf invariant homomorphism

$$H_{v}: \pi_{m+n-1}(S^{m}) \to Z_{v}, \quad n=2t(p-1)$$

is trivial for $t \ge p^3$.

In case of mod p (p: odd prime), we have the following

Theorem 1. If p is an odd prime, the mod p Hopf invariant homomorphism is trivial for $t \ge p$.

The special case of this theorem, corresponding to t=p was proved by Toda [2].

We shall adopt the definition of the stable secondary cohomology operation of Adams [1]. Then we have a similar result to the theorem of Adams [1] on $\operatorname{Sq}^{2^k}(k \geq 4)$.

Theorem 2. \mathcal{P}^{p^k} $(k \geq 1)$ can be represented in the form $\sum a_i \Phi_i$ where Φ_i are stable secondary cohomology operations and a_i are elements of Steenrod algebra with positive degrees.

Theorem 1 is easily deduced from Theorem 2. The special case of Theorem 2 for k=1 was also proved by Toda [2, 3].

We shall denote the Steenrod algebra over Z_p by A and denote the A free module with the symbolic base $[c(\Delta)]$, $[c(\mathcal{D}^1)]$, \cdots , $[c(\mathcal{D}^{r^k})]$ by C_1^k $(k \ge 0)$. Moreover, define the element $z_{-1,k}$ $(k \ge 1)$ of C_1^k as follows:

$$\boldsymbol{z}_{\scriptscriptstyle{-1,k}}\!=\!\boldsymbol{c}(\boldsymbol{\varDelta})[\boldsymbol{c}(\mathcal{Q}^{\scriptscriptstyle{p^k}})]\!-\!\boldsymbol{c}(\boldsymbol{\varDelta},\,\mathcal{Q}^{\scriptscriptstyle{p^k-1}})[\boldsymbol{c}(\mathcal{Q}^{\scriptscriptstyle{1}})]\!-\!\boldsymbol{c}(\mathcal{Q}^{\scriptscriptstyle{p^k}})[\boldsymbol{c}(\boldsymbol{\varDelta})],$$

where Δ is the Bockstein operator associated with the exact sequence $0 \to Z_p \to Z_{p^2} \to Z_p \to 0$ and c is the conjugacy operation [2]. Let d be the A-homomorphism of C_1^k into $A = C_0$ such that $d[c(\Delta)] = c(\Delta)$, $d[c(\mathcal{Q}^{p^i})] = c(\mathcal{Q}^{p^i})$, $i = 0, 1, \cdots, k$. Then $z_{-1,k}$ is a d-cycle, i.e. $d(z_{-1,k}) = 0$. The stable secondary cohomology operation associated with $(d, z_{-1,k})$ will be denoted with $\mathcal{Q}_{z_{-1,k}}$. This is uniquely determined [1, Theorem 3]. Let ε be the augmentation (A-homomorphism) of A into $H^+(X, Z_p) = \sum_{i \ge 0} H^i(X, Z_p)$ which maps A free base 1 into an element u of $H^q(X, Z_p)$. Then we have $\varepsilon d = 0$, if $u \in \bigcap_{i=0}^k \operatorname{Ker} c(\mathcal{Q}^{p^i}) \cap \operatorname{Ker} c(\Delta) = \bigcap_{i=0}^k \operatorname{Ker} \mathcal{Q}^{p^i} \cap \operatorname{Ker} \Delta$, in which case $\mathcal{Q}_{z_{-1,k}}(u)$ is defined.

Consider the effect of $\Phi_{z_{-1,k}}$ for element $y^{p^{k+1}n}$ in $H^{2p^{k+1}n}(P, \mathbb{Z}_p)$, where P is infinite dimensional complex projective space and y is a