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26. Note on Fractional Powers of Linear Operators
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(Comm. by Z. SUETUNA, M.J.A., March 12, 1960)

In the preceding paper by K. Yosida,” it is shown that the frac-
tional power 4%, 0<a<1, of a linear operator A in a Banach space X
can be constructed whenever —A is the infinitesimal generator of a
strongly continuous, bounded semi-group {exp(—tA4)}, and that — A"
also generates a semi-group {exp (—tA*)} which has an analytic exten-
sion in a sector containing the positive t-axis. In the present paper we
shall give another proof of these results, together with some generali-
zations,

We consider linear operators in X which are not necessarily infini-
tesimal generators of semi-groups. For brevity we shall say that A is
of type (w, M)? if

i) A is densely defined® and closed, and

ii) the resolvent set of — A contains the open sector |arg 1|<r—a,
O<w<r, and 2(2+A)"! is uniformly bounded in each smaller sector
|arg A|<z—w—¢, €>0; in particular
(1) A G+A) 1 |<M, 2>0.

As is well known, —A is the infinitesimal generator of a strongly
continuous contraction semi-group if and only if A is of type (z/2, 1).

Theorem 1.* Let A be of type (w, M) with w<=x/2. Then —A
s the infinitesimal generator of a semi-group {T,},>,={exp(—tA)} with
the following properties.

a) T, has an analytic extension for |arg t[<%-—w.

b) In each smaller sector |argt|<%—w~e, e>0, T, and t dT,/dt
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