24. Fractional Powers of Infinitesimal Generators and the Analyticity of the Semi-groups Generated by Them

By Kôsaku Yosida¹⁾

Department of Mathematics, University of Tokyo (Comm. by Z. SUETUNA, M.J.A., March 12, 1960)

1. Consider a one-parameter semi-group of bounded linear operators $T_t(t \ge 0)$ on a Banach space X into X:

(1)
$$T_t T_s = T_{t+s}, T_0 = I$$
 (the identity operator),

(2) strong-
$$\lim_{t \to t_0} T_t x = T_{t_0} x, x \in X,$$

$$(3) \qquad \qquad \sup ||T_t|| < \infty.$$

The infinitesimal generator A of the semi-group T_{ι} is defined by (4) $Ax = \text{strong-lim } h^{-1}(T_{h} - I)x.$

It is known that A is a closed linear operator whose domain D(A) is strongly dense in X. A fractional power

$$(5)$$
 $-(-A)^{\alpha}, (0 < \alpha < 1),$

of A was defined by S. Bochner²⁾ and R. S. Phillips³⁾ as the infinitesimal generator of the semi-group

(6)
$$\widehat{T}_{t}x = \widehat{T}_{t,\alpha}x = \int_{0}^{\infty} T_{\lambda}x \, d\gamma_{t,\alpha}(\lambda),$$

where the measure $d\gamma_{t,\alpha}(\lambda) \ge 0$ is defined through the Laplace integral (7) $\exp(-t\alpha^{\alpha}) = \int_{0}^{\infty} \exp(-\lambda\alpha) d\gamma_{t,\alpha}(\lambda)$, $(t,\alpha>0 \text{ and } 0 < \alpha < 1)$.

The purpose of the present note is to prove that this semi-group $\hat{T}_t = \hat{T}_{t,\alpha}$ is analytic in $t,^{4}$ or more precisely, that \hat{T}_t belongs to the class of semi-groups introduced in a previous note.⁵

For any $x \in X$ and for any t > 0, $\hat{T}_t x = \hat{T}_{t,a} x$ is strongly differentiable in t, and $\hat{T}'_t x = \text{strong-lim}_{h \neq 0} h^{-1} (\hat{T}_{t+h} - \hat{T}_t) x$ satisfies

1) Dedicated to Prof. Zyoiti Suetuna on his 60th Birthday.

²⁾ Diffusion equations and stochastic processes, Proc. Nat. Acad. Sci., **35**, 369-370 (1949).

³⁾ On the generation of semi-groups of linear operators, Pacific J. Math., 2, 343-369 (1952).

⁴⁾ Originally the author proved the analyticity for the case $0 < \alpha \leq 1/2$. It was communicated to Prof. Tosio Kato, and he has proved the analyticity for the case $0 < \alpha < 1$ by a more general approach. See the following paper by Prof. Kato. The author wishes to express his hearty thanks to Prof. Kato for the friendly discussion.

⁵⁾ K. Yosida: On the differentiability of semi-groups of linear operators, Proc. Japan Acad., **34**, 337-340 (1958). Cf. E. Hille's class $H(\phi_1, \phi_2)$ of semi-groups in his book: Functional Analysis and Semi-groups, New York (1948).