23. Cosheaves

By Yukiyosi KAWADA Department of Mathematics, University of Tokyo

(Comm. by Z. SUETUNA, M.J.A., March 12, 1960)

In this note we shall define a cosheaf on a paracompact space X, which is a dual concept of a sheaf (§1). If the base space X is a compact Hausdorff space we can develop a homology theory of X with coefficients in a cosheaf (§2). This homology theory is equivalent to the Čech homology theory and is dual to the cohomology theory with coefficients in a sheaf (§3).¹⁾

1. Let X be a paracompact space. We denote by $\mathfrak{U}(X)$ the family of all closed subsets of X. Let us suppose that a compact topological additive group $\mathfrak{F}(A)$ is associated with each $A \in \mathfrak{U}(X)$. In particular, let $\mathfrak{F}(\phi) = \{0\}$. For each pair (A, B) $(A, B \in \mathfrak{U}(X) \text{ and } A \supset B)$ let a continuous homomorphism $\iota_{A,B}$ of $\mathfrak{F}(B)$ into $\mathfrak{F}(A)$ be defined such that (i) $\iota_{A,A}$ is the identity mapping for each $A \in \mathfrak{U}(X)$, and (ii) $\iota_{A,C} = \iota_{A,B} \circ \iota_{B,C}$ holds for $A, B, C \in \mathfrak{U}(X)$ and $A \supset B \supset C$. Moreover, let $\mathfrak{U}(A)$ $(A \in \mathfrak{U}(X))$ be the family of all $B \in \mathfrak{U}(X)$ such that A is contained in the interior of B. Then $\mathfrak{U}(A)$ is a directed family of sets with respect to the inclusion relation and $\{\mathfrak{F}(B); B \in \mathfrak{U}(A)\}$ is an inverse system of compact additive groups with respect to the continuous homomorphisms $\{\iota\}$. Let us suppose further that

(1) $\mathfrak{F}(A) = \operatorname{inv} \lim \{\mathfrak{F}(B); B \in \mathfrak{U}(A)\}$ for $A \in \mathfrak{U}(X)$ hold. Then we call the system $\mathfrak{F} = \{\mathfrak{F}(A), \iota_{A,B}\}$ a precosheaf with the base space X.²⁾ If necessary we denote $\iota_{A,B}^{\mathfrak{F}}$ instead of $\iota_{A,B}$. In the following we fix a base space X.

A precosheaf $\mathfrak{G} = \{\mathfrak{G}(A), \iota_{A,B}^{\mathfrak{G}}\}$ is called a subprecosheaf if (i) for each $A \in \mathfrak{A}(X) \ \mathfrak{G}(A)$ is a closed subgroup of $\mathfrak{F}(A)$ with the relative topology, (ii) $\iota_{A,B}^{\mathfrak{G}} = \iota_{A,B}^{\mathfrak{F}} | \mathfrak{G}(B)$ for $A \supset B$ holds and (iii) $\mathfrak{G}(A) = \text{inv lim}$ $\{\mathfrak{G}(B); B \in \mathfrak{U}(A)\}$ holds for each $A \in \mathfrak{A}(X)$. Let \mathfrak{G} be a subprecosheaf of a precosheaf \mathfrak{F} . Let us put $\mathfrak{H}(A) = \mathfrak{F}(A)/\mathfrak{G}(A)$ with the quotient topology for each $A \in \mathfrak{A}(X)$ and let the homomorphism $\iota_{A,B}^{\mathfrak{G}}$ be induced from $\iota_{A,B}^{\mathfrak{F}}$. Then $\mathfrak{H} = \{\mathfrak{H}(A), \iota_{A,B}^{\mathfrak{G}}\}$ is a precosheaf. We call \mathfrak{H} the quotient precosheaf of \mathfrak{F} by \mathfrak{G} .

Let $\mathfrak{F}, \mathfrak{G}$ be two precosheaves. Let φ_A be a continuous homomorphism of $\mathfrak{F}(A)$ into $\mathfrak{G}(A)$ for each $A \in \mathfrak{A}(X)$ and let us assume that

¹⁾ In this note we shall only sketch our results. The details and further developments will be discussed in another paper.

²⁾ This definition is dual to that of a sheaf used in Cartan [1], XII: Faisceaux et carapaces.