196 [Vol. 36,

50. On Characterizations of Projection Operators

By Kazumi NAKANO

(Comm. by K. KUNUGI, M.J.A., April 12, 1960)

Let R be a lattice ordered linear space. A linear manifold M of R is said to be normal, if for any $a \in R$ we can find $x, y \in R$ such that a = x + y $x \in M$, $y \in M^{\perp} = \{y; x \perp y \text{ for } x \in M\}$.

Such x depends only on a. So putting Ta=x we can define an operator T from R to M. This operator is called a *projection operator* (cf. H. Nakano: Modulared Semi-ordered Linear Space, Tokyo (1950)).

Here, we will consider some characterizations of projection operators.

Theorem 1. A linear operator T on R is a projection operator, if and only if it satisfies (1), (2).

$$(1) T(Tx) = Tx$$

$$0 \leq Tx \leq x \qquad for \ all \ x \geq 0.$$

Proof. Every projection operator is always linear and satisfies (1),

- (2) (cf. H. Nakano: Modulared Semi-ordered Linear Space, Tokyo (1950)).
- Now, we suppose that a linear operator T satisfies conditions (1), (2). Putting $T^{\perp}=I-T$, T^{\perp} is obviously linear and satisfies conditions
- (1), (2) too. When we consider two subsets of R

$$A = \{x; Tx = 0\}$$
 and $B = \{x; T^{\perp}x = 0\}$,

we have $A = T^{\perp}R$, B = TR, because

$$T(T^{\perp}a) = T(a - Ta) = Ta - T(Ta) = Ta - Ta = 0,$$

for any $a \in R$, and hence $T^{\perp}a \in A$. On the other hand, we see

$$a=a-Ta=T^{\perp}a$$
,

for every $a \in A$, therefore $A = T^{\perp}R$. We obtain B = TR likewise.

Every linear operator T, subject to the condition (2), satisfies

$$T(x \subseteq y) = Tx \subseteq Ty$$
.

Because we see first obviously

$$Tx \cap Ty \geq T(x \cap y)$$
.

On the other hand, we have

$$x = Tx + T^{\perp}x \ge Tx \cap Ty + T^{\perp}(x \cap y),$$

 $y = Ty + T^{\perp}y \ge Tx \cap Ty + T^{\perp}(x \cap y)$

and hence

$$x \cap y \ge Tx \cap Ty + T^{\perp}(x \cap y),$$

that is,

$$T(x_{\frown}y) \ge Tx_{\frown}Ty$$
.

Therefore

$$T(x_{\frown}y) = Tx_{\frown}Ty$$
.

Then we find easily

$$T(x \smile y) = Tx \smile Ty$$
.