66. The Space of Bounded Solutions of the Equation $\Delta u = pu$ on a Riemann Surface

By Mitsuru NAKAI

Mathematical Institute, Nagoya University (Comm. by K. KUNUGI, M.J.A., May 19, 1960)

Throughout this note we denote by R a Riemann surface. Suppose that p is a collection $\{p(z)\}$ of non-negative continuously differentiable functions p(z) of local parameters z=x+iy such that for any two members p(z) and p(z') in p there holds the relation

$$p(z') = p(z) |dz/dz'|^2.$$

We say that such a p is a *density* on R. We consider the partial differential equation of elliptic type

 $(1) \qquad \qquad \Delta u(z) = p(z)u(z),$

X

which is invariantly defined on R. We denote by $B_p(R)$ the totality of real-valued bounded solutions of this equation (1) on R. Here a solution of (1) is always assumed to be twice continuously differentiable. Then $B_p(R)$ is a Banach space with the uniform norm

$$|u|| = \sup_{R} |u|.$$

We are interested in the comparison problem of Banach space structures of $B_p(R)$ for different choices of densities p. It is remarked, as Ozawa proved in [3], that if R is of parabolic type, then $B_0(R)$ is the real number field and $B_p(R)$ consists of only zero unless $p \equiv 0$. Hence we may exclude this trivial case as far as we are concerned with spaces $B_p(R)$. So we assume that R is of hyperbolic type throughout this note unless the contrary is stated. Concerning this comparison problem Royden [4] proved that if there exists a positive constant a such that $a^{-1}p \leq q \leq ap$

holds on R except a compact subset of R, then Banach spaces B_p and B_q are isomorphic. In this note we give a different criterion for B_p and B_q to be isomorphic and state an application of this to removable singularities of bounded solutions of (1).

Theorem 1. If two densities p and q on R satisfy the condition

(2)
$$\int\!\!\!\int_{\mathcal{R}} |p(z)-q(z)| \, dx \, dy < \infty,$$

then Banach spaces $B_p(R)$ and $B_q(R)$ are isomorphic.

Proof.¹⁾ Let $\{R_n\}$ be an exhaustion of R, i.e. R_n is a subdomain of R whose closure is compact and whose relative boundary ∂R_n consists of a finite number of closed analytic Jordan curves and moreover

¹⁾ For elementary knowledge concerning the equation $\Delta u = pu$ on a Riemann surface, refer to Myrberg [1, 2] and also to Royden [4, section 1].