66. The Space of Bounded Solutions of the Equation $\Delta u=p u$ on a Riemann Surface

By Mitsuru Nakai
Mathematical Institute, Nagoya University
(Comm. by K. Kunugi, m.J.A., May 19, 1960)

Throughout this note we denote by R a Riemann surface. Suppose that p is a collection $\{p(z)\}$ of non-negative continuously differentiable functions $p(z)$ of local parameters $z=x+i y$ such that for any two members $p(z)$ and $p\left(z^{\prime}\right)$ in p there holds the relation

$$
p\left(z^{\prime}\right)=p(z)\left|d z / d z^{\prime}\right|^{2}
$$

We say that such a p is a density on R. We consider the partial differential equation of elliptic type

$$
\begin{equation*}
\Delta u(z)=p(z) u(z), \tag{1}
\end{equation*}
$$

which is invariantly defined on R. We denote by $B_{p}(R)$ the totality of real-valued bounded solutions of this equation (1) on R. Here a solution of (1) is always assumed to be twice continuously differentiable. Then $B_{p}(R)$ is a Banach space with the uniform norm

$$
\|u\|=\sup _{R}|u| .
$$

We are interested in the comparison problem of Banach space structures of $B_{p}(R)$ for different choices of densities p. It is remarked, as Ozawa proved in [3], that if R is of parabolic type, then $B_{0}(R)$ is the real number field and $B_{p}(R)$ consists of only zero unless $p \equiv 0$. Hence we may exclude this trivial case as far as we are concerned with spaces $B_{p}(R)$. So we assume that R is of hyperbolic type throughout this note unless the contrary is stated. Concerning this comparison problem Royden [4] proved that if there exists a positive constant a such that

$$
a^{-1} p \leq q \leq a p
$$

holds on R except a compact subset of R, then Banach spaces B_{p} and B_{q} are isomorphic. In this note we give a different criterion for B_{p} and B_{q} to be isomorphic and state an application of this to removable singularities of bounded solutions of (1).

Theorem 1. If two densities p and q on R satisfy the condition

$$
\begin{equation*}
\iint_{R}|p(z)-q(z)| d x d y<\infty \tag{2}
\end{equation*}
$$

then Banach spaces $B_{p}(R)$ and $B_{q}(R)$ are isomorphic.
Proof. ${ }^{1)}$ Let $\left\{R_{n}\right\}$ be an exhaustion of R, i.e. R_{n} is a subdomain of R whose closure is compact and whose relative boundary ∂R_{n} consists of a finite number of closed analytic Jordan curves and moreover

[^0]
[^0]: 1) For elementary knowledge concerning the equation $\Delta u=p u$ on a Riemann surface, refer to Myrberg [1, 2] and also to Royden [4, section 1].
