80. Some Applications of the Maximum Principle for Subharmonic Functions

By Akira SAKAI

(Comm. by K. KUNUGI, M.J.A., June 13, 1960)

Let F be hyperbolic Riemann surface and p_0 be a point fixed on F. Let $g(p, p_0)$ be the Green function of F with the pole at p_0 and $h(p, p_0)$ be conjugate to it. G_r is the domain such that $g(p, p_0) > -\log r$ with the boundary C_r . For the points \tilde{p}, \tilde{p}_0 on \tilde{F} , we define $\tilde{g}(\tilde{p}, \tilde{p}_0)$, $\tilde{h}(\tilde{p}, \tilde{p}_0)$ similarly.

We define the modulus of p, \tilde{p} by the relation

$$|p|_{F} = e^{-g(p, p_{0})}, \quad |\widetilde{p}|_{\widetilde{F}} = e^{-\widetilde{g}(p, \widetilde{F}_{0})},$$

respectively. The ordinary modulus is denoted by '| |'.

1. Let f be an analytic mapping of F into \widetilde{F} . Then $\widetilde{g}(f(p), \widetilde{p}_0)$ is harmonic except for the points at which $f(p) = \widetilde{p}_0$, and for such points $\widetilde{g}(f(p), \widetilde{p}_0) = \infty$. Therefore, $\log |f(p)|_{\widetilde{F}}$ is subharmonic on F.

Theorem 1 (Schwarz). $|f(p)|_{\widetilde{F}} \leq |p|_F$ for $p \in F$.

Proof. Consider the function

 $u(p) = \log |f(p)|_{\widetilde{F}} + g(p, p_0).$

Since $\log |f(p)|_{\widetilde{F}}$ is subharmonic and $g(p, p_0)$ is harmonic on $F' = F - p_0$, u(p) is subharmonic on F'. Let z be a local parameter in the neighborhood V of p_0 . The function $w(p) = \exp\{-\widetilde{g}(f(z), \widetilde{p}_0) - i\widetilde{h}(f(z), \widetilde{p}_0)\}$ is analytic in z. Since we have in V

 $u(z) = -\log |w(z)/z| + u_1(z)$, u_1 is harmonic in V, and w(0) = 0, u(z) is subharmonic in V. Thus u(p) is subharmonic on F.

For an arbitrary r < 1, $u(p) \leq \log r$ on C_r . From the maximum principle we obtain the same inequality in G_r . As $r \rightarrow 1$, we have $u(p) \leq 0$ on F, and this proves the theorem.

Corollary 1. If f(p) is an analytic function on F such that $|f(p)| \leq M$ and $f(p_0) = 0$, then $|f(p)| \leq M |p|_F$.

This is easily seen by taking the plane domain $|w| \leq M$ as \tilde{F} in the theorem.

Theorem 2. Let p_1, p_2, \dots, p_n be the points such that $f(p_i) = \tilde{p}_0$, $i=1, 2, \dots, n$, then

$$|f(p_0)|_{\widetilde{F}} \leq \prod_{i=1}^n |p_i|_F.$$

Proof. We assume that $f(p_0) \neq \tilde{p}_0$, otherwise the theorem is trivial. The function $u(p) = \log |f(p)|_{\tilde{F}} + \sum_{i=1}^{n} g(p, p_i)$ is subharmonic on F.