# 75. A Note on the Milnor's Invariant $\lambda^{\prime}$ for a Homotopy 3-sphere 

By Junzo Tao<br>Department of Mathematics, Osaka University<br>(Comm. by K. Kunugi, M.J.A., June 13, 1960)

1. Let $M$ be a differentiable ( $4 k-1$ )-manifold which is a homology sphere and the boundary of some parallelizable manifold $W$. (The word "manifold" will mean a "compact" manifold throughout in this note.) The intersection number of two homology classes $\alpha, \beta$ of $W$ will be denoted by $\langle\alpha, \beta\rangle$. Let $I(W)$ be the index of the quadratic form

$$
\alpha \rightarrow\langle\alpha, \alpha\rangle,
$$

where $\alpha$ varies over the Betti group $H_{2 k}(W) /($ torsion $)$. Integer coefficients are to be understood.

Define $I_{k}$ as the greatest common divisor of $I(M)$ where $M$ ranges over all almost parallelizable manifolds ${ }^{1)}$ without boundary of dimension $4 k$. The residue class $\frac{1}{8} I(W)^{2)}$ modulo $\frac{1}{8} I_{k}$ will be denoted by $\lambda^{\prime}(M)$.

Then J. Milnor [1] showed the followings:
(1) $\lambda^{\prime}(M)$ depends only on the $J$-equivalence ${ }^{3)}$ class of $M$,
(2) $\lambda^{\prime}$ gives rise to an isomorphism onto

$$
\Lambda^{\prime}: \Theta^{4 k-1}(\partial \pi) \rightarrow Z_{\frac{1}{8}} \Gamma_{k} \quad \text { provided that } k>1,
$$

where $\Theta^{4 k-1}(\partial \pi)^{4)}$ is the set of all $J$-equivalence classes of homotopy $(4 k-1)$-spheres which are the boundaries of some parallelizable manifolds.

Finally, in the list of unsolved problems (see [1]), he proposed the following:

[^0]
[^0]:    1) A manifold $M$ will be called almost parallelizable if there exists a finite subset $F$ so that $M-F$ is parallelizable.
    2) The index $I(W)$ of an almost parallelizable manifold is always divisible by 8 , provided that $\partial W$ is a homology sphere (see J. Milnor [1]).
    3) Two unbounded manifolds $M_{1}, M_{2}$ of the same dimension are $J$-equivalent if there exists a manifold $W$ such that
    (1) the boundary $\partial W$ is the disjoint union of $M_{1}$ and $-M_{2}$,
    and
    (2) both $M_{1}$ and $M_{2}$ are deformation retracts of $W$.
    4) $\Theta^{4 k-1}(\partial \pi)$ forms an abelian group under the sum operation \#, where \# means the following. Let $M_{1}, M_{2}$ be connected differentiable (or combinatorial) manifolds of the same dimension $n$. The differentiable (or combinatorial) sum $M_{1} \# M_{2}$ is obtained by removing a differentiable (or a combinatorial) $n$-cell from each, and then pasting properly the resulting boundary together (see J. Milnor [1, §2] and H. Seifert-W. Threlfall [7, Problem 3, p. 218]).
