75. A Note on the Milnor's Invariant λ' for a Homotopy 3-sphere

By Junzo TAO

Department of Mathematics, Osaka University (Comm. by K. KUNUGI, M.J.A., June 13, 1960)

1. Let M be a differentiable (4k-1)-manifold which is a homology sphere and the boundary of some parallelizable manifold W. (The word "manifold" will mean a "compact" manifold throughout in this note.) The intersection number of two homology classes α , β of Wwill be denoted by $\langle \alpha, \beta \rangle$. Let I(W) be the index of the quadratic form

$$\alpha \rightarrow \langle \alpha, \alpha \rangle$$
,

where α varies over the Betti group $H_{2k}(W)/(\text{torsion})$. Integer coefficients are to be understood.

Define I_k as the greatest common divisor of I(M) where M ranges over all almost parallelizable manifolds¹ without boundary of dimension 4k. The residue class $\frac{1}{8}I(W)^{2}$ modulo $\frac{1}{8}I_k$ will be denoted by $\lambda'(M)$.

Then J. Milnor [1] showed the followings:

(1) $\lambda'(M)$ depends only on the *J*-equivalence³⁰ class of *M*,

(2) λ' gives rise to an isomorphism onto

 $\Lambda': \Theta^{4k-1}(\partial \pi) \to Z_{\frac{1}{2}I_k}$ provided that k > 1,

where $\Theta^{4k-1}(\partial \pi)^{4}$ is the set of all *J*-equivalence classes of homotopy (4k-1)-spheres which are the boundaries of some parallelizable manifolds.

Finally, in the list of unsolved problems (see [1]), he proposed the following:

3) Two unbounded manifolds M_1 , M_2 of the same dimension are J-equivalent if there exists a manifold W such that

(1) the boundary ∂W is the disjoint union of M_1 and $-M_2$, and

(2) both M_1 and M_2 are deformation retracts of W.

¹⁾ A manifold M will be called almost parallelizable if there exists a finite subset F so that M-F is parallelizable.

²⁾ The index I(W) of an almost parallelizable manifold is always divisible by 8, provided that ∂W is a homology sphere (see J. Milnor [1]).

⁴⁾ $\Theta^{4k-1}(\partial \pi)$ forms an abelian group under the sum operation #, where # means the following. Let M_1 , M_2 be connected differentiable (or combinatorial) manifolds of the same dimension n. The differentiable (or combinatorial) sum $M_1 \# M_2$ is obtained by removing a differentiable (or a combinatorial) n-cell from each, and then pasting properly the resulting boundary together (see J. Milnor [1, §2] and H. Seifert-W. Threlfall [7, Problem 3, p. 218]).