98. Certain Congruences and the Structure of Some Special Bands

By Miyuki YAMADA

Shimane University (Comm. by K. KUNUGI, M.J.A., July 12, 1960)

1. A band is synonymous with an idempotent semigroup. Let S be a band, and $S \sim \Sigma\{S_r; r \in \Gamma\}$ its structure decomposition (cf. Kimura [1]). For each subset Δ of Γ , we first define the relation \Re_{Δ} on S as follows:

	(ab=a and both a and b are contained in b
	the same $S_{\gamma}, \gamma \in \mathcal{A}$,
$a \mathfrak{A}_{a}b$ if and only if \langle	or
	ab=b and both a and b are contained in
	the same $S_{\gamma}, \gamma \notin \mathcal{A}$.
Thon it is sadily soor	that \mathfrak{R} is an acquivelence relation on \mathfrak{S}

Then, it is easily seen that $\Re_{\mathcal{J}}$ is an equivalence relation on S but not necessarily a congruence.

The following two theorems have been proved by Kimura [2]:

Theorem I. $\Re_{\phi}(\Re_{\Gamma})$, where ϕ is the empty subset of Γ , is a congruence on S if and only if S is left (right) semiregular. Further, in this case the quotient semigroup $S/\Re_{\phi}(S/\Re_{\Gamma})$ is left (right) regular.

Theorem II. Both \Re_{ϕ} and \Re_{Γ} are congruences on S if and only if S is regular. Further, in this case S is isomorphic to the spined product of S/\Re_{ϕ} and S/\Re_{Γ} with respect to Γ .

In this note, we shall present a necessary and sufficient condition for $\Re_{\mathcal{A}}$ to be a congruence on *S*, and make some generalizations of Theorems I and II. However here only the main results and necessary definitions are given, and the proofs are all omitted. We will study them in detail elsewhere.¹⁾

Notations and terminologies. If M and N are two sets such that $M \supseteq N$, then $M \setminus N$ will denote the complement of N in M. The notation ϕ will denote always the empty set. Throughout the whole paper S will denote a band, unless otherwise mentioned. The structure semilattice of S and the γ -kernel,²⁾ for each γ of the structure semilattice, will be denoted by Γ and S_{γ} respectively. And the structure decomposition of S will be denoted naturally by $S \sim \Sigma\{S_{\gamma}: \gamma \in \Gamma\}$. Any other notation or terminology without definition should be referred to [1].

2. Let Δ be a subset of the structure semilattice Γ of S, and

¹⁾ This is an abstract of the paper which will appear elsewhere.

²⁾ For definition, see [1].