96. A Necessary and Sufficient Condition under which $\dim (X \times Y) = \dim X + \dim Y$

By Yukihiro Kodama

(Comm. by K. KUNUGI, M.J.A., July 12, 1960)

§ 1. Introduction. Let X and Y be locally compact fully normal spaces. It is well known that the relation $\dim (X \times Y) \leq \dim X + \dim Y$ holds, where dim means the covering dimension (cf. [12]). But, the following stronger relation (*) does not hold in general: (*) $\dim (X \times Y) = \dim X + \dim Y$. Some necessary conditions in order that the relation (*) hold have been obtained by E. Dyer¹⁾ and the author.²⁾ However, these conditions are not a sufficient condition.³⁾ The object of this paper is to obtain a necessary and sufficient condition under which the relation (*) is true.

Let G be an abelian group. The homological dimension of X with respect to G (notation: $D_*(X:G)$) is the largest integer n such that there exists a pair (A, B) of closed subsets of X whose n-dimensional (unrestricted) Čech homology group $H_n(A, B:G)^{(4)}$ with coefficients in G is not zero. A space X is called full-dimensional with respect to G if $D_*(X:G) = \dim X$. Let us use the following notations: R = the additive group of all rationals, Z = the additive group of all integers, $R_1 =$ the factor group R/Z, $Q_p =$ the p-primary component of R_1 for a prime p, $Z_q =$ the cyclic group with order q(=Z/qZ), $Z(a_p) =$ the limit group of the inverse system $\{Z_{p^i}: h_i^{i+1}; i=1, 2, \cdots\}$, where h_i^{i+1} is a natural homomorphism from $Z_{p^{i+1}}$ onto Z_{p^i} . We shall prove the following theorem.

Theorem. Let X and Y be locally compact fully normal spaces. In order that the relation $\dim (X \times Y) = \dim X + \dim Y$ hold it is necessary and sufficient that at least one of the following four conditions be satisfied:

- (1) X and Y are full-dimensional with respect to R.
- (2) X and Y are full-dimensional with respect to Z_p for a prime p.
- (3) X and Y are full-dimensional with respect to $Z(\mathfrak{a}_p)$ and Q_p for a prime p respectively.
- (4) X and Y are full-dimensional with respect to Q_p and Z(a_p) for a prime p respectively.
 - 1) Cf. [5, Theorem 4.1].
 - 2) Cf. [10, Theorem 5].
 - 3) Cf. [5, p. 141].
 - 4) Cf. [4] and [9, p. 96].
 - 5) Cf. [8, p. 385].