96. A Necessary and Sufficient Condition under which $\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y$

By Yukihiro Kodama
(Comm. by K. Kunugi, m.J.A., July 12, 1960)

§ 1. Introduction. Let X and Y be locally compact fully normal spaces. It is well known that the relation $\operatorname{dim}(X \times Y) \leqq \operatorname{dim} X+\operatorname{dim}$ Y holds, where dim means the covering dimension (cf. [12]). But, the following stronger relation (*) does not hold in general:
(*) $\quad \operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y$.
Some necessary conditions in order that the relation (*) hold have been obtained by E. Dyer ${ }^{1)}$ and the author. ${ }^{2)}$ However, these conditions are not a sufficient condition. ${ }^{3)}$ The object of this paper is to obtain a necessary and sufficient condition under which the relation (*) is true.

Let G be an abelian group. The homological dimension of X with respect to G (notation: $\mathrm{D}_{*}(X: G)$) is the largest integer n such that there exists a pair (A, B) of closed subsets of X whose n-dimensional (unrestricted) Cech homology group $H_{n}(A, B: G)^{4)}$ with coefficients in G is not zero. A space X is called full-dimensional with respect to G if $\mathrm{D}_{*}(X: G)=\operatorname{dim} X$. Let us use the following notations: $R=$ the additive group of all rationals, $Z=$ the additive group of all integers, $R_{1}=$ the factor group $R / Z, Q_{p}=$ the p-primary component of R_{1} for a prime $p, Z_{q}=$ the cyclic group with order $q(=Z / q Z), Z\left(\mathfrak{a}_{p}\right)=$ the limit group of the inverse system $\left\{Z_{p^{i}}: h_{i}^{i+1} ; i=1,2, \cdots\right\}$, where h_{i}^{i+1} is a natural homomorphism from $Z_{p^{i+1}}$ onto $Z_{p i}$. We shall prove the following theorem.

Theorem. Let X and Y be locally compact fully normal spaces. In order that the relation $\operatorname{dim}(X \times Y)=\operatorname{dim} X+\operatorname{dim} Y$ hold it is necessary and sufficient that at least one of the following four conditions be satisfied:
(1) X and Y are full-dimensional with respect to R.
(2) X and Y are full-dimensional with respect to Z_{p} for a prime p.
(3) X and Y are full-dimensional with respect to $Z\left(\mathfrak{a}_{p}\right)$ and Q_{p} for a prime p respectively.
(4) X and Y are full-dimensional with respect to Q_{p} and $Z\left(a_{p}\right)$ for a prime p respectively.

1) Cf. [5, Theorem 4.1].
2) Cf. [10, Theorem 5].
3) Cf. [5, p. 141].
4) Cf. [4] and [9, p. 96].
5) Cf. [8, p. 385].
