94. On Osima's Blocks of Group Characters

By Kenzo IIZUKA

Department of Mathematics, Kumamoto University, Kumamoto, Japan (Comm. by Z. SUETUNA, M.J.A., July 12, 1960)

Let ⁽⁶⁾ be a group of finite order g and p be a fixed rational prime. M. Osima, in his earlier paper [4], introduced a concept of blocks of characters with regard to a subgroup \mathfrak{H} of ⁽⁶⁾ (" \mathfrak{H} -blocks"). Let \mathfrak{H}_0 be the maximal normal subgroup of ⁽⁶⁾ contained in \mathfrak{H} . It is well known that the irreducible characters¹⁾ $\phi_1, \phi_2, \dots, \phi_k$ of \mathfrak{H}_0 are distributed into the classes $\mathfrak{B}_1, \mathfrak{B}_2, \dots, \mathfrak{B}_s$ of associated characters in ⁽⁶⁾. If $\mathfrak{B}'_1, \mathfrak{B}'_2, \dots, \mathfrak{B}'_s$ are the classes of associated irreducible characters of \mathfrak{H}_0 in \mathfrak{H} , then each class \mathfrak{B}_q is a collection of classes \mathfrak{B}'_{ρ} . Let $\chi_1, \chi_2,$ \dots, χ_n be the irreducible characters of ⁽⁶⁾ and $\theta_1, \theta_2, \dots, \theta_n$ be those of \mathfrak{H} . As is well known, there corresponds to each character χ_i exactly one class \mathfrak{B}_q such that

$$\chi_i(H_0) = s_{i\sigma} \sum_{\phi_\mu \in \mathfrak{B}_\sigma} \phi_\mu(H_0) \qquad (H_0 \in \mathfrak{H}_0)$$

where $s_{i\sigma}$ is a positive rational integer. If a class \mathfrak{B}_{σ} corresponds to a character χ_i in this sense, we say that χ_i belongs to \mathfrak{B}_{σ} by counting χ_i in \mathfrak{B}_{σ} . We also say that θ_{λ} belongs to \mathfrak{B}_{σ} if θ_{λ} belongs to \mathfrak{B}'_{ρ} contained in \mathfrak{B}_{σ} . Then the classes \mathfrak{B}_{σ} are the \mathfrak{H} -blocks of \mathfrak{G} in Osima's sense. From the definition, we see that χ_i and χ_j belong to the same \mathfrak{H} -block of \mathfrak{G} if and only if $\chi_i(H_0)/\chi_i(1) = \chi_j(H_0)/\chi_j(1)$ for all elements H_0 of \mathfrak{H}_0 [4], where 1 denotes the identity of \mathfrak{G} .

In the following, "block" of a group will always mean block with regard to a *p*-Sylow subgroup of the group. While Brauer's blocks for a rational prime q will be referred always as q-blocks. The purpose of this paper is to consider a connection between blocks of \mathfrak{G} and the blocks of the normalizer $\mathfrak{N}(R)$ of a *p*-regular element R in \mathfrak{G} .

The author wishes to thank Prof. M. Osima for several helpful suggestions.

1. Let \mathfrak{P} be a *p*-Sylow subgroup of \mathfrak{G} and \mathfrak{P}_0 be the maximal normal *p*-subgroup of \mathfrak{G} . We shall denote by $\mathfrak{B}_1, \mathfrak{B}_2, \dots, \mathfrak{B}_s$ the blocks of \mathfrak{G} with regard to \mathfrak{P} . For each \mathfrak{B}_s we set

(1.1)
$$\mathcal{\Delta}_{\sigma} = \sum_{\chi_i \in \mathfrak{B}_{\sigma}} e_i,$$

where e_i is the primitive idempotent of the center Z of the group ring of \mathfrak{G} over the field Ω of g-th roots of unity which belongs to χ_i . Let K_1, K_2, \dots, K_n be the classes of conjugate elements in \mathfrak{G} and G_1 ,

¹⁾ The term "irreducible character" will always mean absolutely irreducible ordinary character.