93. A Theorem on Flat Couples

By Takeshi Ishikawa
Department of Mathematics, Tokyo Metropolitan University, Tokyo
(Comm. by Z. Suetuna, m.J.A., July 12, 1960)

In this short note, I will prove a theorem in homological algebra and its corollary, which is well known in ideal theory in integral domains.

Throughout this note any ring is assumed to be commutative and have a unit element which acts as the identity operator on any module over the ring. We will call the pair (R, R^{\prime}) of a ring R and its overring R^{\prime} a flat couple, if R^{\prime} / R is flat as an R-module [7]. A ring R is called semi-hereditary if every finitely generated ideal of R is R-projective [1]. Then we have the

Theorem. Let R be a semi-hereditary ring and R^{\prime} be an integral (or module finite) extension ring of R. Then, $\left(R, R^{\prime}\right)$ is a flat couple.

The theorem is obtained directly from the following two lemmas.
Lemma 1. A semi-hereditary ring is integrally closed in its full ring of quotients.

Proof. Let R be a semi-hereditary ring and K be its full ring of quotients. Let x be an element of K and be integral over R and

$$
x^{n}+r_{1} x^{n-1}+\cdots+r_{n}=0
$$

be an equation of integral dependence satisfied by x over R. There exists a non-zerodivisor r of R such that $r x^{n-i} \in R$ for $i=0,1, \cdots$, $n-1$. Since $x^{n+1}=-\left(r_{1} x^{n}+\cdots+r_{n} x\right), r x^{n+1}$ is also in R. Thus we have $r x^{i} \in R$ for $i=1,2, \cdots$. Now, we consider an ideal I of R generated by ($r x^{i} ; i=1,2, \cdots$). Since this ideal I is finitely generated (in fact, generated by $r x, r x^{2}, \cdots, r x^{n}$) and R is semi-hereditary, I is projective and by Cartan-Eilenberg [1, VII, 3.1] there exist R-homomorphisms $\varphi_{i}: I \rightarrow R$ such that $y=\sum_{i=1}^{n} \varphi_{i}(y) r x^{i}$ for all $y \in I$. Thus since $r x \in I$, it follows

$$
r x=\sum_{i=1}^{n} \varphi_{i}(r x) r x^{i}=\sum_{i=1}^{n} \varphi_{i}\left(r^{2} x^{i+1}\right)=\sum_{i=1}^{n} \varphi_{i}\left(r x^{i+1}\right) r
$$

and since r is a non-zerodivisor, we have $x=\sum_{i=1}^{n} \varphi_{i}\left(r x^{i+1}\right) \in R$. This shows that R is integrally closed in K.

Let A be an R-module and a be a non-zero element of A. We say that a is an R-torsion element if $r a=0$ for some non-zerodivisor r of R, and A is called R-torsion-free if A has no R-torsion element except zero.

Lemma 2. A ring R is integrally closed in its full ring of

