113. The Lebesgue Constants for (γ, r) Summation of Fourier Series

By Kazuo Ishiguro

Department of Mathematics, Hokkaido University, Sapporo, Japan (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1960)

1. The Euler method of summation associates with a given sequence $\{s_n\}$ the means

$$\sigma_{n,r} = \sigma_n = \sum_{\nu=0}^{n} {n \choose \nu} r^{\nu} (1-r)^{n-\nu} s_{\nu}, \quad n = 0, 1, 2, \cdots,$$

where r is a constant which satisfies $0 < r \le 1$. The case r=1 corresponds to the ordinary convergence. The Lebesgue constants for this method are given by L. Lorch [1] for the case $r=\frac{1}{2}$, i.e.

$$L\left(n;\frac{1}{2}\right)=\frac{2}{\pi^2}\log 2n+A+o(1)$$
 as $n\to\infty$,

where

(1)
$$A = -\frac{C}{\pi^2} + \frac{2}{\pi} \int_0^1 \frac{\sin u}{u} du - \frac{2}{\pi} \int_0^\infty \left\{ \frac{2}{\pi} - |\sin u| \right\} \frac{du}{u}$$

and C is the Euler-Mascheroni constant. For 0 < r < 1 these constants are given by A. E. Livingston [2], i.e.

$$\begin{split} L(n;r) &= \frac{2}{\pi^2} \log \frac{2nr}{1-r} + A + o(1) \\ &= L \Big(nr/(1-r); \frac{1}{2} \Big), \end{split}$$

where A is defined by (1).

Next the (γ, r) method of summation associates with a given sequence $\{s_n\}$ the means

$$\sigma_{n,r}^* = \sigma_n^* = \sum_{\nu=n}^{\infty} {\binom{\nu}{n}} r^{n+1} (1-r)^{\nu-n} s_{\nu}, \quad n = 0, 1, 2, \cdots,$$

where r is a constant which satisfies $0 < r \le 1$ [3]. Since the case r=1 corresponds to the ordinary convergence, we may suppose 0 < r < 1. The object of the present note is to investigate the Lebesgue constants for (γ, r) method of Fourier series. We prove the following theorem.

Theorem. The Lebesgue constants for (γ, r) method are given by

$$L^{*}(n; r) = \frac{2}{\pi^{2}} \log \frac{2n}{1-r} + A + o(1)$$

= $L\left(\frac{n}{1-r}; \frac{1}{2}\right) + o(1)$ as $n \to \infty$,

where A is defined by (1).