138. Weakly Compact Operators on the Spaces of Continuous Functions

By Junzo WADA

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

In this note we shall give a brief account of some properties of weakly compact operators on the spaces of continuous functions on general spaces. Our main purpose is to extend some results of Arens [1] and Grothendieck [5]. Full details will appear in Osaka Mathematical Journal.

1. Let E and F be locally convex linear topological spaces. Then a continuous linear operator T of E into F is said to be a *compact* (resp. *weakly compact*) *operator* if T maps a neighborhood of 0 in Einto a compact (resp. weakly compact) subset in F. A completely regular Hausdorff space X is said to be a k_0 -space if whenever $U \frown K$ is a neighborhood of x_0 in K for a subset U ($\ni x_0$) and for any compact subset K ($\ni x_0$), U is a neighborhood of x_0 in X. A neighborhood here need not be an open set. A k_0 -space is a k-space,¹⁾ and any completely regular space satisfying the 1st axiom of countability or any locally compact Hausdorff space is always ak_0 -space. Let X be a topological space and \mathfrak{S} be a set of compact subsets. Then we denote by $C_{\mathfrak{S}}(X)$ the space of all continuous functions on X with the topology of uniform convergence of sets in \mathfrak{S} . " $\bigcup \mathfrak{S} = X$ " denotes that the sum of all subsets in \mathfrak{S} is X.

We first extend a theorem of Bartle $[2]^{2}$ to the case of locally convex topological linear spaces.

Theorem 1. (i) Let E be a barrelled locally convex linear space. Let Y be a completely regular Hausdorff space and let \mathfrak{S} be a set of compact sets in Y with $\bigcup \mathfrak{S} = Y$. Then a linear operator T of E into $C_{\mathfrak{S}}(Y)$ is continuous if and only if there is a continuous mapping τ of Y into E' with respect to the topology $\sigma(E', E)$ such that $(Te)y = \langle \tau y, e \rangle$ for any $e \in E$ and for any $y \in Y$.

(ii) Let E be a Banach space. Let Y be a completely regular Hausdorff space and \mathfrak{S} be a set of compact subsets in Y with $\bigcup \mathfrak{S} = Y$. Then a continuous linear operator T of E into $C_{\mathfrak{S}}(Y)$ is weakly compact if and only if there is a continuous mapping τ of Y into E' with respect to the topology $\sigma(E', E'')$ such that $(Te)y = \langle \tau y, e \rangle$ for $e \in E$ and $y \in Y$.

(iii) Let E be a locally convex topological linear space. Let Y be

¹⁾ Cf. for example, Kelly [6].

²⁾ Cf. [2, p. 55, Theorem 10.2].