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1. Unique continuation theorems for solutions of certain fourth
order elliptic equations, which are iterations of two second order el-
liptic equations, are considered by R. N. Pederson [4], S. Mizohata
[8] and L. Hormander [2].

Here we prove the following results with weaker vanishing re-
quirements than these authors.

Theorem 1. Let L (x, D) (¢=1,2) be homogeneous, second order
elliptic operators with coefficients of class C® in a meighbourhood G
of the origin in Euclidean n-space such that L®(0,&)=L®(0,&). Let
L(z, &)=L®(x, &)L®(x, &). If a function u(x) of class C* in G satisfies
the following two conditions:

1.1) for any a>0
lim{ > | D* ul}r'“:O,
r>0 \[Bl=4

(1.2) for a positive number M
| L, Dyu(e) =M {[u@lr-*+ 53 | Dhuta)r

+ S Du@Prt+ 3 | Do) @e ),

then u(x) identically vanishes in a meighbourhood of the origin.

The proof is based on the method used by H. O. Cordes [1]
and R. N. Pederson [4], but we use only the transformation

s=r f 26“"‘°’-1)—1—dz‘. The result was suggested by Professor H.

Yam;be and Dr. S. Ito.

2. Let K“(R,) be a class of functions u(x) satisfying the follow-
ing three conditions:
(2.1) u(x) is defined in a cubic neighbourhood G of the origin with
radius R and is in class C™(G), for any a>0
2.2) lim{ 53 | Drulfr-e=0,

>0 \|f|=m

(2.8) u(x)=0 for any x such that |2|=R, (R,<R).

Lemma 1. Let L be an elliptic operator of order 2 represented
by polar coordinate systems such that



