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(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

This note gives firstly some metrizability conditions which are
trivial corollaries of J. Nagata’s general metrization theorem (1).
Our metrization theorem can be applied to criterions for n-dimension-
ality of metric spaces with the aid of the concept ’cushioned refine-
ments’ obtained by E. Michael (2). One of the benefits of this
interesting concept is to include both closed closure-preserving refine-
ments and open star-refinements (cf. Remark 1.5). Thus our criterion
for n-dimensionality provides us with more general form than [4,
Theorem 7.2 and Theorem 7.5_ where closed closure-preserving refine-
merits and open star-refinements are essentially used respectively. It
is to be noted that throughout this note a covering need not be open.

1. Metrizability. Lemma 1.1 (J. Nagata’s general metrization
theorem [5, Theorem 1). In order that a topological space R be metri-
zable it is necessary and sucient that one can assign a neighborhood
basis { Ui(x); i-- 1, 2,... }, neighborhood systems {S(x); i-- 1, 2,...} and
{S(x); i=l, 2,...} satisfying the following conditions.

1 y U(x) implies S(y)S(x) (=the empty-set).
2 y S(x) implies S(y) Ui(x).

Theorem 1.2. In order that a topological space R be metrizable
it is necessary and sucient that there exists a sequence of coverings
(C), i=1, 2,..., of R which satisfies the following conditions.

(3) For any point x of R and any neighborhood U of x there
exists i with S(x, (C),) 1) U.

(4) For any point x of R and any i there exists j with x
S(R-S(x, (C),), (C)).

Proof. Since the necessity is clear, we prove only the sufficiency.

i) When x6 S(R- S(x, (C)), (C).), let us put

S(x) R-- S(R-- S(x, $,), 22.),
S(x,

ii) When xeS(R-S(x, (C)),(C).), let us put
U,(x) Z(x) R,

=S(x,

1) S(x, gJi)=-[H; xeHei}. When R1 is a subset of R, S(RI,i)=[H; RH
4=, He g3}.


