135. On the Dimension of Product Spaces

By Keiô NAGAMI

Ehime University, Matsuyama (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1960)

The purpose of the present note is to give a sufficient condition under which the inequality $\operatorname{Ind} R \times S \leq \operatorname{Ind} R + \operatorname{Ind} S$ holds good, where Ind denotes the large inductive dimension. We define inductively Ind R. Let $\operatorname{Ind} \phi = -1$, where ϕ is the empty set. $\operatorname{Ind} R \leq n \ (=0, 1, 2, \cdots)$ if and only if for any pair $F \subset G$ of a closed set F and an open set G there exists an open set H with $F \subset H \subset G$ such that $\operatorname{Ind} (\overline{H} - H) \leq n - 1$. When $\operatorname{Ind} R \leq n - 1$ is false and $\operatorname{Ind} R \leq n$ is true, we call $\operatorname{Ind} R = n$. When $\operatorname{Ind} R \leq n$ is false for any n, we call $\operatorname{Ind} R = \infty$.

Let \mathfrak{l} be a collection of subsets of a topological space R. Then we call \mathfrak{l} is *discrete* or *locally finite* if every point of R has a neighborhood which meets at most respectively one element or finite elements of \mathfrak{l} . We call \mathfrak{l} is σ -discrete or σ -locally finite if \mathfrak{l} is a sum of a countable number of discrete or locally finite subcollections respectively. A *binary covering* is a covering which consists of two elements.

Lemma 1. Let R be a hereditarily paracompact Hausdorff space. Then the following statements are valid.

1) (Subset theorem). For any subset T of R Ind $T \leq \text{Ind } R$.

2) (Sum theorem). If F_i , $i=1, 2, \cdots$, are closed, $\operatorname{Ind} \bigcup_{i=1}^{\infty} F_i = \sup$ Ind F_i .

3) (Local dimension theorem). For any collection \mathfrak{U} of open sets $\operatorname{Ind} \subseteq \{U; U \in \mathfrak{U}\} = \sup \{\operatorname{Ind} U; U \in \mathfrak{U}\}.$

This is proved by C. H. Dowker [1]. The main part of the following lemma is essentially proved in Morita [4], but we give here full proof for the sake of completeness.

Lemma 2. In a hereditarily paracompact Hausdorff space R the following conditions are equivalent.

1) Ind $R \leq n$.

2) Every open covering can be refined by a locally finite and σ -discrete open covering \mathfrak{V} such that for any $V \in \mathfrak{V}$ Ind $(\overline{V} - V) \leq n-1$.

3) Every binary open covering can be refined by a σ -locally finite open covering \mathfrak{V} such that for any $V \in \mathfrak{V}$ Ind $(\overline{V} - V) \leq n-1$.

Proof. First we prove the implication $1 \rightarrow 2$). Let \mathfrak{ll} be an arbitrary open covering of R; then by A. H. Stone's theorem [5] \mathfrak{ll}