9. On Inner Automorphisms of Certain Finite Factors

By Masahiro NAKAMURA^{*)} and Zirô TAKEDA^{**)} (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1961)

1. Employing the terminology of J. Dixmier [1], let us consider an abelian von Neumann algebra A with a faithful normal trace. If G is an ergodic group of automorphisms of A preserving the trace, then the crossed product $G \otimes A$ in the sense of T. Turumaru [5] coincides with the classical examples of finite factors due to F. J. Murray and J. von Neumann.

For an inner automorphism of $G \otimes A$ preserving the subalgebra A, I. M. Singer [4] proved that the inducing unitary operator $\Sigma_g g \otimes e_g$ satisfies certain properties; roughly speaking, up to a multiplication function, the character space of A splits into mutually disjoint clopen sets with the characteristic function e_g , on each of which the action of the automorphism coincides with the action of g.

2. Now, if A is a finite factor and G is an enumerable group of outer automorphisms¹⁾ of A, then $G \otimes A$ is a finite factor.²⁾ The purpose of the present note is to show a factor analogue of Singer's theorem in the following

THEOREM. If a unitary operator $\Sigma_g \otimes a_g$ induces an inner automorphism α of $G \otimes A$ which preserves the factor A, then all g-coefficients a_g vanish up to a certain g_0 .

Proof. If the unitary operator induces the action $x \to x^{\alpha}$, then (1) $(\Sigma_{g} g \otimes a_{g}) x = x^{\alpha} (\Sigma_{g} g \otimes a_{g})$

for all $x \in A$. (1) implies at once,

 $(2) a_g x = x^{\alpha g} a_g,$

for all $x \in A$. In (2), if αg is known being outer as an action on A, then [2, Lemma 1] implies at once $a_g = 0$. Hence, to prove the theorem, it is sufficient to show that g is outer on A for all $g \in G$ up to a certain g_0 .

If not, then there is an another $g_1 \in G$ for which αg_1 is inner too, or $\alpha g_1 \equiv 1$ modulo the group *I* of all inner automorphisms of *A*. Hence, our hypothesis implies $\alpha g_0 \equiv \alpha g_1 \mod I$, whence $g_0 \equiv g_1 \mod I$. This is clearly impossible by the definition of the group *G* of outer automorphisms unless $g_0 = g_1$. This proves the theorem.

3. By the above proof, the theorem can be restated as follows:

2) A proof of the statement is contained in [2, Theorem 1].

^{*)} Osaka Gakugei Daigaku.

^{**)} Ibaraki University.

¹⁾ A group G is called a group of outer automorphisms if each $g \in G$ is an outer automorphism unless g=1.