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1. We have shown that the fundamental theorem of the Galois
theory remains true for finite factors [3] as same as for simple
Noetherian rings. Subsequently, in this note, we shall discuss about
the so-called extension theorem® for finite factors.

We denote by A a continuous finite factor standardly acting on
a separable Hilbert space H and by G a finite group of outer auto-
morphisms of A. Put B the set of all elements invariant by G. B is
a subfactor of A. Now let C and D be two intermediate subfactors
between A and B, then by the fundamental theorem of the Galois
theory, there correspond the Galois groups E and F for C and D
respectively. That is, £ and F are subgroups of G by which C and
D are shown as the sets of elements invariant by E and F respectively.
Then we may give the extension theorem in the following form.

THEOREM. Let o be an isomorphism between C and D fixing every
elements of B, then o may be always extended to an automorphism
of A which belongs to G.

2. We shall begin with some preliminaries. By A’ we mean the
set A equipped with the inner product {a’|b’)=r(ab*) defined by the
standard trace - of A. As well known, A is faithfully represented
on the completion Hilbert space of A°. The representation is spatially
isomorphic to A acting on H, whence we may identify the representa-
tion with A and so A’ with a dense subset of H. Thus 1°cH gives
a trace element of A. The subspace [1°C]? of H belongs to C'. Since
C'C B’ it belongs B’ too. Hence its relative dimension dim [1°C]
with respect to B’ is meaningful.

As well known, the automorphism group G permits a unitary rep-
resentation {u,} on H such that 2=w}zu, for zcA. Furthermore,
as shown in [3], putting z"=u}z'u, for 2'€¢A’, G can be seen as a
group of outer automorphisms of A’. Hence we may construct the
crossed product GR® A’ of A’ by G, cf. [2]. This can be understand
as a von Neumann algebra acting on a Hilbert space H composed of
all functions defined on G taking values in H. We show by >},9Q®¢,
a function belonging to H which takes value ¢, at geG. Then a'eA’

1) Refer to [5] for the theorem of rings with the minimum condition.
2) [1°C] means the metric closure of the set {1°¢|ceC}.



