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The objective of the present paper is to prove the theorem
announced in section of the preceding paper [1.

To avoid the trivial repetition of the same technique of proving
we shall verify only the fact that the existence of a vector field (12)
of the above place is equivalent to that of such a conformal separa-
bility as this:
( 1 ) ds--sinM (ex+d) ds+(dx")"
where c and d are constants, and ds is an (n--1)-dimensional metric
form independent of

First let us assume that the metric form is conformally separable
in the way of (1). Set --, where is the so-called Kronecker’s
delta. Then we have

,l:e eoth (cx"+d) g--c coth (cx"+d).
Let V tanh (cx+d) and we get

V--tanh (cx’Td) ,l+c seeM- (ex"Td)
:c g,--c{1--secM (cx"+d)},
=c g,--c tanh" (cx’+d),#=c(g,-- VV).

The converse is as follows. Suppose that V satisfies (12)of [1].
Then we have
( 2 ) 1/2(11 v I1-)=c(1 II v II)V.
Taking a canonical coordinate to V, we have

v’--II V[l’ and g.,,=l______.
II vii

From (2) we get

Consequently
(11Vll).-c(1-11Vll).

II Vll. -e4-...
1-11 vii"

Hence we find
(3) II v II=tanh (cs+d),
where s is the are length of the tangent curve. It is easily seen
that d is a eonstant. From (10) of [13 we have

c ,/g.. dx"H(x)--exp 2
tanh (csTd)

--exp 2c f ds --sinh" (csTd).
tanh (cs+d)


