35. A Certain Type of Vector Field. III

By Toshiyuki Maebashi
Department of Mathematics, Hokkaido University
(Comm. by K. Kunugi, m.J.A., March 13, 1961)

The objective of the present paper is to prove the theorem announced in section \mathbf{V} of the preceding paper [1].

To avoid the trivial repetition of the same technique of proving we shall verify only the fact that the existence of a vector field (12) of the above place is equivalent to that of such a conformal separability as this:

$$
\begin{equation*}
d s^{2}=\sinh ^{2}\left(c x^{n}+d\right) d s_{0}^{2}+\left(d x^{n}\right)^{2} \tag{1}
\end{equation*}
$$

where c and d are constants, and $d s_{0}^{2}$ is an ($n-1$)-dimensional metric form independent of x^{n}.

First let us assume that the metric form is conformally separable in the way of (1). Set $\xi_{i}=\delta_{i}^{n}$, where δ_{i}^{n} is the so-called Kronecker's delta. Then we have

$$
\xi_{i \mid j}=c \operatorname{coth}\left(c x^{n}+d\right) g_{i j}-c \operatorname{coth}\left(c x^{n}+d\right) \xi_{i} \xi_{j} .
$$

Let $V_{i}=\tanh \left(c x^{n}+d\right)$ and we get

$$
\begin{aligned}
V_{i \mid j} & =\tanh \left(c x^{n}+d\right) \xi_{i \mid j}+c \operatorname{sech}^{2}\left(c x^{n}+d\right) \xi_{i} \delta_{j}^{n} \\
& =c g_{i j}-c\left\{1-\operatorname{sech}^{2}\left(c x^{n}+d\right)\right] \xi_{i} \xi_{j} \\
& =c g_{i j}-c \tanh ^{2}\left(c x^{n}+d\right) \xi_{i} \xi_{j}=c\left(g_{i j}-V_{i} V_{j}\right) .
\end{aligned}
$$

The converse is as follows. Suppose that V satisfies (12) of [1]. Then we have

$$
\begin{equation*}
\frac{1}{2}\left(\|V\|^{2}\right)_{\mid j}=c(1-\|V\|)^{2} V_{j} . \tag{2}
\end{equation*}
$$

Taking a canonical coordinate to V, we have

$$
V^{i}=\|V\|^{2} \delta_{n}^{i} \quad \text { and } \quad g_{n n}=\frac{1}{\|V\|^{2}}
$$

From (2) we get

$$
\frac{1}{2}\left(\|V\|^{2}\right)_{\mid n}=c\left(1-\|V\|^{2}\right) .
$$

Consequently

$$
\frac{\|V\|_{1 n}}{1-\|V\|^{2}}=c \sqrt{g_{n n}}
$$

Hence we find

$$
\begin{equation*}
\|V\|=\tanh (c s+d) \tag{3}
\end{equation*}
$$

where s is the arc length of the tangent curve. It is easily seen that d is a constant. From (10) of [1] we have

$$
\begin{aligned}
H(x) & =\exp 2 \int \frac{c}{\tanh (c s+d)} \sqrt{g_{n n}} d x^{n} \\
& =\exp 2 c \int \frac{d s}{\tanh (c s+d)}=\sinh ^{2}(c s+d) .
\end{aligned}
$$

