54. On the Definition of the Knot Matrix

By Kunio Murasugi
Hosei University, Tokyo
(Comm. by K. Kunugi, m.J.A., April 12, 1961)

The knot matrix defined in [3] for alternating knots can be defined for any knots or links. To do this, we introduce three indices η, d, ε for each crossing point. ${ }^{1{ }^{1}}$

Let a regular projection K in S^{2} of a knot k have m of the second kind of the loops which divides S^{2} into $m+1$ domains, E_{1}, E_{2}, \cdots, E_{m+1}. Let us denote ($E_{i} \smile \dot{E}_{i}$) $K=K_{i}$. Then the regions contained in E_{i} can be classified into two classes, black and white (cf. Lemma 1.10 [3]). For the sake of brevity, any crossing point in K_{i} is denoted by $c_{i, 2}$, any white region in E_{i} is denoted by $X_{i, \mu}$ and w_{i} denotes the number of the white regions in E_{i}.
[Definition 1] For any $c_{i, 2}$, the first index η_{i} is defined as +1 or -1 as is shown in the following figure.

$$
\eta_{i}=+1
$$

(a)

$\eta_{i}=-1$
(b)
(It should be noted that the orientation of k is irrelevant to the definition.)

As usual, two corners among four corners meeting at a crossing point are marked with dots [3].
[Definition 2] For any $c_{j, 2}$, the second index d is defined as follows.
(1) $d x_{i, \mu}\left(c_{j, 2}\right)=1$ or 0 according as the $c_{j, 2^{-}}$corner of $X_{i, \mu}$ is dotted or undotted.
(2) $d x_{i, \mu}\left(c_{j, 2}\right)=0$ if $c_{j, 2}$ does not lie on $\dot{X}_{i, \mu}$.

If $c_{j, 2}$ lies on $\dot{X}_{j, \mu}$, then the third index $\varepsilon_{X_{j, \mu}}\left(c_{j, 2}\right)$ is defined as +1 or -1 according as the $c_{j, \lambda^{-}}$-corner of $X_{j, \mu}$ is dotted or undotted. By means of these indices, the knot matrix of K can be defined.
[Definition 3] The knot matrix $M=\left(M_{i j}\right)_{i, j=1,2, \cdots, m+1}$ is defined as follows:

$$
\begin{align*}
M_{i i} & =\left(a_{p q}^{(i)}\right)_{p, q=1}, \cdots, w_{i} \\
-a_{p q}^{(i)} & =\sum_{c_{i, 2} \in \dot{\dot{x}_{i, p}} \dot{x_{i, q}}} \eta_{i}\left(c_{i, 2}\right) d x_{i, p}\left(c_{i, 2}\right), \quad(p \neq q), \tag{1}\\
a_{p p}^{(i)} & =-\sum_{\substack{p=1 \\
p \neq q}}^{w_{i}} a_{p q} .
\end{align*}
$$

[^0]
[^0]: 1) For symbols and notations, see [3].
