54. On the Definition of the Knot Matrix

By Kunio MURASUGI Hosei University, Tokyo (Comm. by K. KUNUGI, M.J.A., April 12, 1961)

The knot matrix defined in [3] for alternating knots can be defined for any knots or links. To do this, we introduce three indices η , d, ε for each crossing point.¹⁾

Let a regular projection K in S^2 of a knot k have m of the second kind of the loops which divides S^2 into m+1 domains, E_1, E_2, \dots, E_{m+1} . Let us denote $(E_i \cup \dot{E}_i) \subset K = K_i$. Then the regions contained in E_i can be classified into two classes, black and white (cf. Lemma 1.10 [3]). For the sake of brevity, any crossing point in K_i is denoted by $c_{i,\lambda}$, any white region in E_i is denoted by $X_{i,\mu}$ and w_i denotes the number of the white regions in E_i .

[Definition 1] For any $c_{i,2}$, the first index η_i is defined as +1 or -1 as is shown in the following figure.

(It should be noted that the orientation of k is irrelevant to the definition.)

As usual, two corners among four corners meeting at a crossing point are marked with dots [3].

[Definition 2] For any $c_{j,l}$, the second index d is defined as follows.

(1) $d_{x_{i,\mu}}(c_{j,\lambda})=1$ or 0 according as the $c_{j,\lambda}$ -corner of $X_{i,\mu}$ is dotted or undotted.

(2) $dx_{i,\mu}(c_{j,\lambda})=0$ if $c_{j,\lambda}$ does not lie on $X_{i,\mu}$.

If $c_{j,\lambda}$ lies on $X_{j,\mu}$, then the third index $\varepsilon_{X_{j,\mu}}(c_{j,\lambda})$ is defined as +1 or -1 according as the $c_{j,\lambda}$ -corner of $X_{j,\mu}$ is dotted or undotted.

By means of these indices, the knot matrix of K can be defined. [Definition 3] The knot matrix $M = (M_{ij})_{i,j=1,2,...,m+1}$ is defined as follows:

1) For symbols and notations, see [3].