50. Remarks on Katětov's Uniformly O-dimensional Mappings

By Keiô NAGAMI

(Comm. by K. KUNUGI, M.J.A., April 12, 1961)

It seems to me that the notion of uniformly 0-dimensional mappings introduced by M. Katětov plays an essential rôle in his dimension theory for non-separable metric spaces [3]. Let R and S be metric spaces (with the metric ρ_1 and ρ_2 respectively) and f a continuous mapping of R into S. According to him, f is called ((ρ_1, ρ_2)-) uniformly 0-dimensional if the following condition is satisfied.

(*) For any $\varepsilon > 0$ there exists a $\delta > 0$ such that when $M \subseteq S$ and dia $M^{1} < \delta$, $f^{-1}(M)$ can be decomposed into mutually disjoint relatively open (in $f^{-1}(M)$) sets whose diameters are less than ε .

He proved that for any metric space R with dim $R^{2\circ} \le n^{3\circ}$ there exists a uniformly 0-dimensional continuous mapping of R into the Euclidean *n*-space E^n . With the aid of this fundamental theorem he proved the decomposition theorem and in consequence the equality dim R=Ind $R^{4\circ}$ for metric space R. Modifying Katětov's definition, we shall give in this note a definition of uniformly 0-dimensional continuous mappings of normal spaces into normal ones. Let R and S be normal spaces and f a uniformly 0-dimensional continuous mapping, in our sense, of R into S. Then it is the main purpose to show that dim $R \le \dim S$ and Ind $R \le \operatorname{Ind} S$.

Definition. Let R and S be topological spaces. Let $U = \{l_i, \lambda \in A\}$ and $V = \{\mathfrak{B}_{\mu}; \mu \in M\}$ be respectively collections of open coverings of R and S. Let f be a continuous mapping of R into S. Then we call that f is (U, V)-uniformly 0-dimensional if the following condition is satisfied:

(**) For any $\lambda \in \Lambda$ there exists a $\mu \in M$ such that for any $V \in \mathfrak{B}_{\mu}$ there exists a collection $\{H_{\alpha}; \alpha \in A\}$ of disjoint open sets of R with $\smile \{H_{\alpha}; \alpha \in A\} = f^{-1}(V)$ which refines \mathfrak{U}_{λ} .

Throughout this note the following notations will be used.

 U_{F} =the collection of all finite open coverings of R.

 U_B =the collection of all binary open coverings⁵ of R.

¹⁾ dia M denotes the diameter of M.

²⁾ dim R denotes the covering dimension of R.

³⁾ Throughout this note n denotes a non-negative integer.

⁴⁾ Ind R denotes the large inductive dimension of R defined inductively as follows. For the empty set ϕ let $\operatorname{Ind} \phi = -1$. Suppose that $\operatorname{Ind} R' \le n-1$ is defined. Then $\operatorname{Ind} R \le n$ if for any pair $F \subset G (\subset R)$ of a closed set F and an open set G there exists an open set H with $F \subset H \subset G$ such that $\operatorname{Ind} \overline{H} - H) \le n-1$.

⁵⁾ A covering which consists of two elements is called a binary covering.