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1. Introduction. In the preceding paper I, we have described
the definition of the cross and Whitehead products. In this paper we
shall show a few properties of the cross and Whitehead products as
consequences of their definition and prove the existence and unique-
ness of these products.

2. Immediate consequences from the axiom. Consider two maps

f" (X, x0)->(X’, Xo) and g" (Y, yo)->(Y’, y) and let fg" (X Y, Xv Y,
(Xo, yo))->(X’ Y’, X’v Y’, (x, y)) be a map defined by (f g)(x, y)-(f(x),

Proposition 1. For a (X, Xo), fl .( Y, Yo), we have
(f X g)(a X )--f#a X g#.

This is easily proved and the proof is omitted.
Now let r" XX Y->YxX be a map such that r(x, y)=(y, x).
Proposition 2. For a end(X, o), fiend(Y, Yo), we have

( 1 ) ’,(a X
In order to prove this, we shall need the following lemma, whose

proof will be omitted.
Lemma 3. Let f, g" (X, Xo) --> ( Y, Yo) be H-homomorphisms between

H-spaces X and Y with units Xo, Yo respectively. An H-homomor-
phism h=f. g" (X, xo)->(Y, Yo) is defined by h(x) f(x). g(x), xe X. Then
we have h(a)=fa(a)Tg(a), for aer,(X, xo), n>0. If X and Y are
loop spaces, =o(X, Xo) and ro(Y, Yo) may be considered as groups. In
this case the above relation holds also.

Proof of Prop. 2. In cases m--n=0; m--0, n>0; m>0, n=0,
we can show directly by definition that the formula (1) holds. Now
we assume that the formula (1) holds for k<m, l<n. Let Dr"
DXxDY-+DYxDX, r" Xv YYvX and Dr" D(Xv Y)D(YvX) be
maps induced by r. Then Dar(aXfl)=DrO(aXfl)=(Qr’)Q(aX)
=(--1)"-(Dr’)9(DaXDfl)--(--1)"-((Dr’)og)(DaXD/). A map (Dr’)o
9xxoY-.o(Y x) is defined by ((Dr’) 9)(x, Y)--(Yo, x)(y, xo)(yo, x-)

(Y-, Xo). On the other hand, (9o(Dr))(x, y)--(y, Xo)(Y0, x)(Y-, x0)(Yo, x-).
Therefore (Dr’) 9= (9 (Dr))-

--(Vo(Qr))#. Hence
(Dr)a)(Da X D/)= (-- 1)"9 ((-- 1)"-""-’(DX Da))-- (-- 1)--t2a(/ x a).
Thus we have r(a X/9)--(-- 1)’"/9 X a.


