45. A Note on Hausdorff Spaces with the Star-finite Property. II

By Keiô NAGAMI

(Comm. by K. KUNUGI, M.J.A., April 12, 1961)

K. Morita [4] constructed, for every metric space R, a 0-dimensional metric space S and a closed continuous mapping f of S onto R such that $f^{-1}(x)$ is compact for every point x of R. The purpose of this note is to give an analogous proposition to this theorem for the case when R is paracompact Hausdorff. As for the terminologies and the notations used in this note, refer to my previous note [7].

Theorem 1. Let f be a closed continuous mapping of a regular space R onto a topological space S with the star-finite property such that $f^{-1}(y)$ has the Lindelöf property for every point y of S. Then R has the star-finite property.

Proof. Let \mathfrak{U} be an arbitrary open covering of R. For every point y of S let $\mathfrak{U}_v = \{U_a; \alpha \in A_y\}$ be a subcollection of \mathfrak{U} which consists of countable elements such that \mathfrak{U}_v covers $f^{-1}(y)$. Let $U_v = \bigvee \{U_a; \alpha \in A_y\}$ and $V_v = S - f(R - U_v)$. Then V_v is an open neighborhood of y. Let $\mathfrak{V} = \{V_\beta; \beta \in B\}$ be a star-finite open covering of S which refines $\{V_v; y \in S\}$. Let us define a (single-valued) mapping φ of S into S such that $\varphi(\beta) = y$ yields $V_\beta \subset V_v$. Let $W_v = f^{-1}(V_v)$ and $W_\beta = f^{-1}(V_\beta)$. Then we can prove that $\mathfrak{W} = \{W_\beta \cap U_a; \alpha \in A_{\varphi(\beta)}, \beta \in B\}$ is a star-countable open covering of S.

To show that \mathfrak{W} covers R, let x be an arbitrary point of R. Then there exists $\beta \in B$ such that $x \in W_{\beta}$. Since $V_{\beta} \subset V_{\varphi(\beta)}$, we get $W_{\beta} \subset W_{\varphi(\beta)}$. Since $W_{\varphi(\beta)} \subset U_{\varphi(\beta)}$ and $U_{\varphi(\beta)} = \bigvee \{U_{\alpha}; \alpha \in A_{\varphi(\beta)}\}$, there exists an $\alpha \in A_{\varphi(\beta)}$ such that $x \in U_{\alpha}$. Hence \mathfrak{W} is an open covering of R. On the other hand the star-countability of \mathfrak{W} is almost evident. Therefore we can conclude that R has the star-countable property. Since in general a regular space with the star-countable property has the star-finite property by Yu. Smirnov [9], has so and the theorem is proved.

Theorem 2. Let R be a non-empty paracompact Hausdorff space. Then there exist a paracompact Hausdorff space A with dim A=0 and a closed continuous mapping f of A onto R such that $f^{-1}(x)$ is compact for every point x of R.

Proof. Let $\{\mathfrak{F}_{\alpha} = \{F_{\alpha}; \alpha \in A_{\lambda}\}; \lambda \in \Lambda\}$ be the collection of all locally finite colsed coverings of R. Let A be the aggregate of points a

¹⁾ This theorem is also almost essentially proved in Morita [5].