44. **On Metric General Connections**

By Tominosuke OTSUKI Tokyo Institute of Technology, Tokyo (Comm. by Z. SUETUNA, M.J.A., April 12, 1961)

In this note, the author will show that the Levi-Civita's connections of Riemann spaces can be generalized in the theory of general connections under some conditions on an n-dimensional differentiable manifold \mathfrak{X} . He will use the notations in [3].

1. A tensor P of type (1, 1) is called normal when P as a homomorphism of the tangent bundle $T(\mathfrak{X})$ of \mathfrak{X} is an isomorphism on each $P(T_x(\mathfrak{X})) = P_x(\mathfrak{X}), x \in \mathfrak{X}$, and dim $P_x(\mathfrak{X})$ is constant. Let us assume that P is normal and put dim $P_x(\hat{x}) = m$. If we put $N_x(\hat{x}) =$ the kernel of P on $T_x(\mathfrak{X})$, then we have

$$T_x(\mathfrak{X}) = P_x(\mathfrak{X}) + N_x(\mathfrak{X}).$$

According to the direct sum decomposition of $T(\mathfrak{X})$, we define two projections A and N which map $T_x(\mathfrak{X})$ onto $P_x(\mathfrak{X})$ and $N_x(\mathfrak{X})$ respectively at each point x of \mathfrak{X} . A and N may be considered as tensors of type (1, 1) of \mathfrak{X} . Clearly we have A+N=I, $A^2=A$, $N^2=N$, AN=NA=0, AP = PA = P and NP = PN = 0, where I denotes the fundamental unit tensor of type (1, 1).

Now, we say that a normal tensor P is orthogonally related with a non-singular symmetric tensor $G = g_{ij} du^i \otimes du^j$, if $P_x(\mathfrak{X})$ and $N_x(\mathfrak{X})$ are mutually orthogonal with respect to G, regarding G as a metric tensor.

A general connection Γ , which is locally written as

 $\Gamma = \partial u_i \otimes (P_i^i d^2 u^j + \Gamma_{in}^i du^j \otimes du^h), \partial u_i = \partial \partial u^i,$

is called normal, if the tensor $P = \lambda(\Gamma)^{2} = \partial u_i \otimes P_i^i du^j$ is normal.

A normal general connection Γ is called proper,³⁾ if the tensor of type (1, 2) with local components $N_k^i \Gamma_{jk}^k$ vanishes, where N_j^i are the local components of the tensor N.

We say that a general connection Γ satisfies the metric condition for a symmetric covariant tensor $G = g_{ij} du^i \otimes du^j$, if

 $DG = g_{ij,h} du^i \otimes du^j \otimes du^h = 0,$ (1)

where DG denotes the covariant differential of G with respect to Γ . On the metric condition, the following theorem holds good as in the

¹⁾ See [3].

²⁾ See [3], §2.

³⁾ On the geometrical meaning of this condition, see Theorem 5.2 of [4]. In general, Γ^i_{jh} are not local components of a tensor of type (1, 3) as the classical affine connections but $N_k^i \Gamma_{jk}^k$ are so. 4) See (2.15) of [3].